Suppr超能文献

penalizedclr:一个用于惩罚条件逻辑回归的 R 包,用于整合多个组学层。

penalizedclr: an R package for penalized conditional logistic regression for integration of multiple omics layers.

机构信息

Department of Economics, Ca' Foscari University of Venice, Venice, Italy.

Department of Biostatistics, University of Oslo, Oslo, Norway.

出版信息

BMC Bioinformatics. 2024 Jun 27;25(1):226. doi: 10.1186/s12859-024-05850-2.

Abstract

BACKGROUND

The matched case-control design, up until recently mostly pertinent to epidemiological studies, is becoming customary in biomedical applications as well. For instance, in omics studies, it is quite common to compare cancer and healthy tissue from the same patient. Furthermore, researchers today routinely collect data from various and variable sources that they wish to relate to the case-control status. This highlights the need to develop and implement statistical methods that can take these tendencies into account.

RESULTS

We present an R package penalizedclr, that provides an implementation of the penalized conditional logistic regression model for analyzing matched case-control studies. It allows for different penalties for different blocks of covariates, and it is therefore particularly useful in the presence of multi-source omics data. Both L1 and L2 penalties are implemented. Additionally, the package implements stability selection for variable selection in the considered regression model.

CONCLUSIONS

The proposed method fills a gap in the available software for fitting high-dimensional conditional logistic regression models accounting for the matched design and block structure of predictors/features. The output consists of a set of selected variables that are significantly associated with case-control status. These variables can then be investigated in terms of functional interpretation or validation in further, more targeted studies.

摘要

背景

匹配病例对照设计,直到最近才主要适用于流行病学研究,但现在也在生物医学应用中变得很常见。例如,在组学研究中,比较同一患者的癌症组织和健康组织是很常见的。此外,研究人员现在通常从各种不同的来源收集数据,希望将这些数据与病例对照状态联系起来。这突出表明需要开发和实施能够考虑到这些趋势的统计方法。

结果

我们提出了一个 R 包 penalizedclr,它提供了一种实现惩罚条件逻辑回归模型的方法,用于分析匹配病例对照研究。它允许对不同的块协变量施加不同的惩罚,因此在存在多源组学数据时特别有用。实现了 L1 和 L2 惩罚。此外,该软件包还实现了稳定性选择,用于选择回归模型中的变量。

结论

所提出的方法填补了适用于拟合高维条件逻辑回归模型的可用软件的空白,这些模型考虑了匹配设计和预测因子/特征的块结构。输出结果包括一组与病例对照状态显著相关的选定变量。然后可以根据功能解释或进一步的、更有针对性的研究来验证这些变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验