Suppr超能文献

[碱基编辑方法与pegRNA设计程序]

[Prime-Editing Methods and pegRNA Design Programs].

作者信息

Mikhaylova E V, Kuluev B R, Gerashchenkov G A, Chemeris D A, Garafutdinov R R, Kuluev A R, Baymiev An K, Baymiev Al K, Chemeris A V

机构信息

Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Science, Ufa, 450054 Russia.

出版信息

Mol Biol (Mosk). 2024 Jan-Feb;58(1):22-39.

Abstract

It has been 10 years since CRISPR/Cas technology was applied to edit the genomes of various organisms. Its ability to produce a double-strand break in a DNA region specified by the researcher started a revolution in bioengineering. Later, the Base Editing (BE) method was developed. BE is performed via the formation of single-strand breaks by the mutant form of Cas nuclease (nickase), fused with deaminases and other enzymes. It can be used to promote A ↔ G and C ↔ T transitions, and a C → G transversion. Just over 3 years ago, a new Prime Editing (PE) variant of CRISPR/Cas was invented. Unlike BE, in PE the nickase is fused with reverse transcriptase, capable of building a new DNA chain using the pegRNA template. The pegRNA consists of an elongated guide RNA with an extra sequence at the 3'-end. Prime editing makes it possible to insert the desired mutations into this extra sequence and to carry out any substitutions and indels of bases without the use of special donor DNA. To date, a number of PE variants have been proposed; they are briefly considered in this review with an emphasis on prime editing of plant genomes. Some attention is also paid to pegRNA design programs, as well as evaluation of the efficiency of the editing. Such a variety of PE techniques is due to the opportunities of high-precision introduction of desired changes with a rather low frequency of off-target mutations in the genomes of various organisms. The relatively low efficiency of prime editing inspires researchers to offer new approaches. There is hope that further development of the technology will improve PE enough to take its rightful place among the genome targeting methods that are suitable for any organisms, and will have a positive impact on the agricultural sector, industrial biotechnologies, and medicine.

摘要

自CRISPR/Cas技术应用于编辑各种生物体的基因组以来,已经过去了10年。它能够在研究人员指定的DNA区域产生双链断裂,从而开启了生物工程领域的一场革命。后来,碱基编辑(BE)方法得以开发。碱基编辑是通过与脱氨酶和其他酶融合的Cas核酸酶突变形式(切口酶)形成单链断裂来实现的。它可用于促进A↔G和C↔T转换以及C→G颠换。就在3年多前,CRISPR/Cas的一种新的碱基编辑(PE)变体被发明出来。与碱基编辑不同,在碱基编辑中,切口酶与逆转录酶融合,能够使用pegRNA模板构建新的DNA链。pegRNA由一个在3'端带有额外序列的延长引导RNA组成。碱基编辑使得在这个额外序列中插入所需突变以及在不使用特殊供体DNA的情况下进行任何碱基替换和插入缺失成为可能。到目前为止,已经提出了许多碱基编辑变体;本文将对它们进行简要介绍,重点是植物基因组的碱基编辑。同时也会关注pegRNA设计程序以及编辑效率评估。如此多样的碱基编辑技术源于在各种生物体基因组中以相当低的脱靶突变频率高精度引入所需变化的可能性。碱基编辑相对较低的效率促使研究人员提出新的方法。人们希望该技术的进一步发展将充分改进碱基编辑,使其在适用于任何生物体的基因组靶向方法中占据应有的地位,并将对农业、工业生物技术和医学产生积极影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验