Ataguba Grace, Orji Rita
Department of Computer Science, Dalhousie University, Halifax, NS, Canada.
Front Big Data. 2024 Jun 17;7:1359906. doi: 10.3389/fdata.2024.1359906. eCollection 2024.
Persuasive technologies, in connection with human factor engineering requirements for healthy workplaces, have played a significant role in ensuring a change in human behavior. Healthy workplaces suggest different best practices applicable to body posture, proximity to the computer system, movement, lighting conditions, computer system layout, and other significant psychological and cognitive aspects. Most importantly, body posture suggests how users should sit or stand in workplaces in line with best and healthy practices. In this study, we developed two study phases (pilot and main) using two deep learning models: convolutional neural networks (CNN) and Yolo-V3. To train the two models, we collected posture datasets from creative common license YouTube videos and Kaggle. We classified the dataset into comfortable and uncomfortable postures. Results show that our YOLO-V3 model outperformed CNN model with a mean average precision of 92%. Based on this finding, we recommend that YOLO-V3 model be integrated in the design of persuasive technologies for a healthy workplace. Additionally, we provide future implications for integrating proximity detection taking into consideration the ideal number of centimeters users should maintain in a healthy workplace.
与健康工作场所的人为因素工程要求相关的说服技术,在确保人类行为改变方面发挥了重要作用。健康的工作场所提出了适用于身体姿势、与计算机系统的距离、活动、照明条件、计算机系统布局以及其他重要心理和认知方面的不同最佳实践。最重要的是,身体姿势表明用户在工作场所应如何根据最佳和健康的做法坐着或站立。在本研究中,我们使用两种深度学习模型(卷积神经网络(CNN)和Yolo-V3)开发了两个研究阶段(试点和主要阶段)。为了训练这两种模型,我们从知识共享许可的YouTube视频和Kaggle收集了姿势数据集。我们将数据集分类为舒适和不舒适的姿势。结果表明,我们的YOLO-V3模型以92%的平均精度优于CNN模型。基于这一发现,我们建议将YOLO-V3模型集成到健康工作场所的说服技术设计中。此外,我们考虑到用户在健康工作场所应保持的理想厘米数,为集成接近度检测提供了未来的启示。