Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
ACS Synth Biol. 2024 Jul 19;13(7):2038-2044. doi: 10.1021/acssynbio.4c00318. Epub 2024 Jul 2.
Carbon dioxide emission and acidification during chemical biosynthesis are critical challenges toward microbial cell factories' sustainability and efficiency. Due to its acidophilic traits among workhorse lineages, the probiotic Nissle (EcN) has emerged as a promising chemical bioproducer. However, EcN lacks a CO-fixing system. Herein, EcN was equipped with a simultaneous CO fixation system and subsequently utilized to produce low-emission 5-aminolevulinic acid (5-ALA). Two different artificial CO-assimilating pathways were reconstructed: the novel ribose-1,5-bisphosphate (R15P) route and the conventional ribulose-5-phosphate (Ru5P) route. CRISPRi was employed to target the AB and genes in order to redirect the carbon flux. As expected, the CRISPRi design successfully strengthened the CO fixation. The CO-fixing route via R15P resulted in high biomass, while the engineered Ru5P route acquired the highest 5-ALA and suppressed the CO release by 77%. CO fixation during 5-ALA production in EcN was successfully synchronized through fine-tuning the non-native pathways with CRISPRi.
在化学生物合成过程中,二氧化碳排放和酸化是微生物细胞工厂可持续性和效率的关键挑战。由于其在工作菌株中的嗜酸特性,益生菌 EcN 已成为一种有前途的化学生物生产菌。然而,EcN 缺乏 CO 固定系统。在此,我们为 EcN 配备了同时 CO 固定系统,并随后利用其来生产低排放的 5-氨基乙酰丙酸(5-ALA)。构建了两种不同的人工 CO 同化途径:新颖的核酮糖-1,5-二磷酸(R15P)途径和传统的核酮糖-5-磷酸(Ru5P)途径。CRISPRi 被用于靶向 AB 和 基因,以重新引导碳通量。不出所料,CRISPRi 设计成功地增强了 CO 固定。通过 R15P 进行 CO 固定导致高生物量,而工程 Ru5P 途径获得了最高的 5-ALA,并将 CO 释放抑制了 77%。通过使用 CRISPRi 精细调整非天然途径,成功地在 EcN 中同步了 5-ALA 生产过程中的 CO 固定。