Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Department of Anesthesiology and Reanimation, AZ St.-Jan Brugge Oostende AV, Brugge, Belgium.
PLoS One. 2024 Jul 2;19(7):e0304413. doi: 10.1371/journal.pone.0304413. eCollection 2024.
Sedatives are commonly used to promote sleep in intensive care unit patients. However, it is not clear whether sedation-induced states are similar to the biological sleep. We explored if sedative-induced states resemble biological sleep using multichannel electroencephalogram (EEG) recordings.
Multichannel EEG datasets from two different sources were used in this study: (1) sedation dataset consisting of 102 healthy volunteers receiving propofol (N = 36), sevoflurane (N = 36), or dexmedetomidine (N = 30), and (2) publicly available sleep EEG dataset (N = 994). Forty-four quantitative time, frequency and entropy features were extracted from EEG recordings and were used to train the machine learning algorithms on sleep dataset to predict sleep stages in the sedation dataset. The predicted sleep states were then compared with the Modified Observer's Assessment of Alertness/ Sedation (MOAA/S) scores.
The performance of the model was poor (AUC = 0.55-0.58) in differentiating sleep stages during propofol and sevoflurane sedation. In the case of dexmedetomidine, the AUC of the model increased in a sedation-dependent manner with NREM stages 2 and 3 highly correlating with deep sedation state reaching an AUC of 0.80.
We addressed an important clinical question to identify biological sleep promoting sedatives using EEG signals. We demonstrate that propofol and sevoflurane do not promote EEG patterns resembling natural sleep while dexmedetomidine promotes states resembling NREM stages 2 and 3 sleep, based on current sleep staging standards.
镇静剂常用于促进重症监护病房患者的睡眠。然而,目前尚不清楚镇静诱导状态是否与生物睡眠相似。我们使用多通道脑电图(EEG)记录来探索镇静诱导状态是否类似于生物睡眠。
本研究使用了来自两个不同来源的多通道 EEG 数据集:(1)镇静数据集,包括 102 名接受异丙酚(N=36)、七氟醚(N=36)或右美托咪定(N=30)的健康志愿者;(2)公开的睡眠 EEG 数据集(N=994)。从 EEG 记录中提取了 44 个定量时间、频率和熵特征,并使用机器学习算法在睡眠数据集上进行训练,以预测镇静数据集的睡眠阶段。然后将预测的睡眠状态与改良观察者警觉/镇静评分(MOAA/S)进行比较。
在区分异丙酚和七氟醚镇静期间的睡眠阶段时,模型的性能较差(AUC=0.55-0.58)。在右美托咪定的情况下,模型的 AUC 以镇静依赖性的方式增加,NREM 阶段 2 和 3 与深度镇静状态高度相关,AUC 达到 0.80。
我们使用 EEG 信号解决了一个重要的临床问题,即识别促进生物睡眠的镇静剂。我们证明,异丙酚和七氟醚不能促进类似于自然睡眠的 EEG 模式,而右美托咪定则根据当前的睡眠分期标准促进类似于 NREM 阶段 2 和 3 的睡眠状态。