Suppr超能文献

基于数字病理图像的机器学习对基质金属蛋白酶 9 表达和胶质母细胞瘤生存预测的研究。

Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images.

机构信息

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China.

出版信息

Sci Rep. 2024 Jul 2;14(1):15065. doi: 10.1038/s41598-024-66105-x.

Abstract

This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan-Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.

摘要

本研究旨在应用病理组学预测胶质母细胞瘤(GBM)中基质金属蛋白酶 9(MMP9)的表达,并探讨与病理组学相关的潜在分子机制。本研究纳入了 127 名 GBM 患者,其中 78 名患者被随机分配到病理组学建模的训练和测试队列中。使用 Kaplan-Meier 和 Cox 回归分析评估 MMP9 的预后意义。使用 PyRadiomics 从 H&E 染色的全切片图像中提取特征。使用最大相关性最小冗余(mRMR)和递归特征消除(RFE)算法进行特征选择。使用支持向量机(SVM)和逻辑回归(LR)创建预测模型。使用 ROC 分析、校准曲线评估和决策曲线分析评估性能。结果显示,GBM 患者的 MMP9 表达升高,这是 GBM 的独立预后因素。该研究选择了 6 个特征用于病理组学模型。SVM 模型的训练和测试子集的曲线下面积(AUC)分别为 0.828 和 0.808,LR 模型的 AUC 分别为 0.778 和 0.754。C 指数和校准图显示了有效的估计能力。使用 SVM 模型计算的病理组学评分与总生存时间高度相关。这些发现表明 MMP9 在 GBM 的发生和预后中起关键作用。我们的病理组学模型在预测 GBM 患者 MMP9 表达水平和预后方面具有较高的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d37/11220146/dcbe0acc3537/41598_2024_66105_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验