Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA.
Critical Path Institute, Tucson, Arizona, USA.
CPT Pharmacometrics Syst Pharmacol. 2024 Aug;13(8):1309-1316. doi: 10.1002/psp4.13193. Epub 2024 Jul 3.
Clinical trials seeking to delay or prevent the onset of type 1 diabetes (T1D) face a series of pragmatic challenges. Despite more than 100 years since the discovery of insulin, teplizumab remains the only FDA-approved therapy to delay progression from Stage 2 to Stage 3 T1D. To increase the efficiency of clinical trials seeking this goal, our project sought to inform T1D clinical trial designs by developing a disease progression model-based clinical trial simulation tool. Using individual-level data collected from the TrialNet Pathway to Prevention and The Environmental Determinants of Diabetes in the Young natural history studies, we previously developed a quantitative joint model to predict the time to T1D onset. We then applied trial-specific inclusion/exclusion criteria, sample sizes in treatment and placebo arms, trial duration, assessment interval, and dropout rate. We implemented a function for presumed drug effects. To increase the size of the population pool, we generated virtual populations using multivariate normal distribution and ctree machine learning algorithms. As an output, power was calculated, which summarizes the probability of success, showing a statistically significant difference in the time distribution until the T1D diagnosis between the two arms. Using this tool, power curves can also be generated through iterations. The web-based tool is publicly available: https://app.cop.ufl.edu/t1d/. Herein, we briefly describe the tool and provide instructions for simulating a planned clinical trial with two case studies. This tool will allow for improved clinical trial designs and accelerate efforts seeking to prevent or delay the onset of T1D.
旨在延缓或预防 1 型糖尿病 (T1D) 发病的临床试验面临一系列实际挑战。尽管自发现胰岛素以来已经过去了 100 多年,但特立帕肽仍然是唯一获得 FDA 批准的可延缓 T1D 从 2 期向 3 期进展的疗法。为了提高针对这一目标的临床试验的效率,我们的项目通过开发基于疾病进展模型的临床试验模拟工具,旨在为 T1D 临床试验设计提供信息。使用来自 TrialNet 预防途径和儿童时期糖尿病环境决定因素两项自然史研究的个体水平数据,我们之前开发了一个定量联合模型,用于预测 T1D 发病时间。然后,我们应用了特定于试验的纳入/排除标准、治疗组和安慰剂组的样本量、试验持续时间、评估间隔和失访率。我们实现了一个用于假定药物作用的功能。为了增加人群规模,我们使用多元正态分布和 ctree 机器学习算法生成了虚拟人群。作为输出,计算了功效,它总结了成功的概率,显示出两臂之间 T1D 诊断时间分布的统计学显著差异。通过迭代,也可以生成功率曲线。该基于网络的工具可公开获取:https://app.cop.ufl.edu/t1d/。在此,我们简要描述了该工具,并提供了使用两个案例研究模拟计划临床试验的说明。该工具将允许改进临床试验设计并加速预防或延缓 T1D 发病的努力。