Griebel Adam J, Maier Petra, Summers Henry, Clausius Benjamin, Kanasty Isabella, He Weilue, Peterson Nicholas, Czerniak Carolyn, Oliver Alexander A, Kallmes David F, Kadirvel Ramanathan, Schaffer Jeremy E, Guillory Roger J
Fort Wayne Metals, Fort Wayne, IN, USA.
School of Mechanical Engineering, Stralsund University of Applied Sciences, Stralsund, DE, USA.
Bioact Mater. 2024 Jun 7;40:74-87. doi: 10.1016/j.bioactmat.2024.06.002. eCollection 2024 Oct.
Flow diverter devices are small stents used to divert blood flow away from aneurysms in the brain, stagnating flow and inducing intra-aneurysmal thrombosis which in time will prevent aneurysm rupture. Current devices are formed from thin (∼25 μm) wires which will remain in place long after the aneurysm has been mitigated. As their continued presence could lead to secondary complications, an absorbable flow diverter which dissolves into the body after aneurysm occlusion is desirable. The absorbable metals investigated to date struggle to achieve the necessary combination of strength, elasticity, corrosion rate, fragmentation resistance, radiopacity, and biocompatibility. This work proposes and investigates a new composite wire concept combining absorbable iron alloy (FeMnN) shells with one or more pure molybdenum (Mo) cores. Various wire configurations are produced and drawn to 25-250 μm wires. Tensile testing revealed high and tunable mechanical properties on par with existing flow diverter materials. In vitro degradation testing of 100 μm wire in DMEM to 7 days indicated progressive corrosion and cracking of the FeMnN shell but not of the Mo, confirming the cathodic protection of the Mo by the FeMnN and thus mitigation of premature fragmentation risk. In vivo implantation and subsequent μCT of the same wires in mouse aortas to 6 months showed meaningful corrosion had begun in the FeMnN shell but not yet in the Mo filament cores. In total, these results indicate that these composites may offer an ideal combination of properties for absorbable flow diverters.
血流转向装置是一种小型支架,用于使血流从脑部动脉瘤处转向,使血流停滞并引发动脉瘤内血栓形成,最终防止动脉瘤破裂。目前的装置由细(约25μm)金属丝制成,在动脉瘤病情缓解后很长时间仍会留在体内。由于它们的持续存在可能导致继发性并发症,因此需要一种在动脉瘤闭塞后能溶解于体内的可吸收血流转向装置。迄今为止所研究的可吸收金属难以实现强度、弹性、腐蚀速率、抗碎裂性、射线不透性和生物相容性等所需特性的必要组合。这项工作提出并研究了一种新的复合金属丝概念,即将可吸收铁合金(FeMnN)外壳与一个或多个纯钼(Mo)芯相结合。制备了各种金属丝构型,并拉制成25 - 250μm的金属丝。拉伸测试表明其具有与现有血流转向装置材料相当的高且可调节的机械性能。在DMEM中对100μm金属丝进行7天的体外降解测试表明,FeMnN外壳出现了渐进性腐蚀和开裂,但钼芯未出现,这证实了FeMnN对钼的阴极保护作用,从而降低了过早碎裂的风险。将相同的金属丝植入小鼠主动脉6个月后进行体内植入及后续μCT扫描显示,FeMnN外壳已开始出现明显腐蚀,但钼丝芯尚未出现。总体而言,这些结果表明这些复合材料可能为可吸收血流转向装置提供理想的性能组合。