Suppr超能文献

利用卫星数据探索微观城市景观,预测登革热蚊媒孳生地的分布。

Exploring fine-scale urban landscapes using satellite data to predict the distribution of Aedes mosquito breeding sites.

机构信息

ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France.

CIRAD, UMR TETIS, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier, Cedex, F‑34093, France.

出版信息

Int J Health Geogr. 2024 Jul 7;23(1):18. doi: 10.1186/s12942-024-00378-3.

Abstract

BACKGROUND

The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models.

METHODS

We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available.

RESULTS

Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available.

CONCLUSION

This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.

摘要

背景

蚊媒传染病(如登革热)的传播是全球主要的公共卫生问题。埃及伊蚊是登革热的主要传播媒介,在城市环境中大量繁殖,主要在人工或天然水容器中滋生。尽管城市景观与潜在滋生地之间的关系仍未得到充分了解,但这种了解可以帮助降低与这些疾病相关的风险。本研究旨在分析法属圭亚那(南美洲)城市的城市景观特征与潜在滋生地数量和类型之间的关系,并评估这些变量在预测模型中的应用潜力。

方法

我们使用多因素分析来探索源自高分辨率卫星图像的城市景观特征与现场调查记录的潜在滋生地之间的关系。然后,我们应用不同的城市变量集的随机森林模型来预测缺乏昆虫学数据的潜在滋生地的数量。

结果

应用于卫星图像的景观分析表明,可以使用纹理指数清楚地识别城市类型。多因素分析有助于确定与潜在滋生地分布相关的变量,例如建筑物类别面积、景观形状指数、建筑物数量和纹理指数的第一分量。使用整个数据集预测潜在滋生地数量的模型提供了 0.90 的 R²,可能受到过拟合的影响,但允许对所有研究地点进行预测。由于其类型不同,潜在滋生地的预测结果变化很大,对于在城市景观中常见的滋生地类型(如小于 200 L 的容器、大体积容器和桶),预测结果更好。研究还概述了昆虫学数据采样专门为本研究设计所带来的局限性。在没有准确实地数据的情况下,模型输出可以用作蚊虫动态模型的输入。

结论

本研究首次在研究中使用潜在滋生地的常规收集数据。它突出了将基于卫星的城市环境特征纳入控制策略中的潜在好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa8c/11229250/3915030d288d/12942_2024_378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验