Suppr超能文献

现代化外科质量:一种改善退伍军人人群中外科部位感染检测的新方法。

Modernizing Surgical Quality: A Novel Approach to Improving Detection of Surgical Site Infections in the Veteran Population.

机构信息

Department of Surgery, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California, USA.

Department of Surgery, University of California San Diego School of Medicine, La Jolla, California, USA.

出版信息

Surg Infect (Larchmt). 2024 Sep;25(7):499-504. doi: 10.1089/sur.2024.013. Epub 2024 Jul 8.

Abstract

Surgical site infections (SSIs) are an important quality measure. Identifying SSIs often relies upon a time-intensive manual review of a sample of common surgical cases. In this study, we sought to develop a predictive model for SSI identification using antibiotic pharmacy data extracted from the electronic medical record (EMR). A retrospective analysis was performed on all surgeries at a Veteran Affair's Medical Center between January 9, 2020 and January 9, 2022. Patients receiving outpatient antibiotics within 30 days of their surgery were identified, and chart review was performed to detect instances of SSI as defined by VA Surgery Quality Improvement Program criteria. Binomial logistic regression was used to select variables to include in the model, which was trained using k-fold cross validation. Of the 8,253 surgeries performed during the study period, patients in 793 (9.6%) cases were prescribed outpatient antibiotics within 30 days of their procedure; SSI was diagnosed in 128 (1.6%) patients. Logistic regression identified time from surgery to antibiotic prescription, ordering location of the prescription, length of prescription, type of antibiotic, and operating service as important variables to include in the model. On testing, the final model demonstrated good predictive value with c-statistic of 0.81 (confidence interval: 0.71-0.90). Hosmer-Lemeshow testing demonstrated good fit of the model with p value of 0.97. We propose a model that uses readily attainable data from the EMR to identify SSI occurrences. In conjunction with local case-by-case reporting, this tool can improve the accuracy and efficiency of SSI identification.

摘要

手术部位感染(SSI)是一个重要的质量衡量标准。识别 SSI 通常依赖于对常见手术病例样本的耗时的手动审查。在这项研究中,我们试图使用从电子病历(EMR)中提取的抗生素药房数据开发一种用于 SSI 识别的预测模型。

对 2020 年 1 月 9 日至 2022 年 1 月 9 日期间退伍军人事务医疗中心的所有手术进行了回顾性分析。确定了在手术前 30 天内接受门诊抗生素治疗的患者,并进行了图表审查,以根据 VA 手术质量改进计划标准检测 SSI 实例。二项逻辑回归用于选择要包含在模型中的变量,该模型使用 k 折交叉验证进行训练。

在研究期间进行的 8253 次手术中,有 793 例(9.6%)患者在手术前 30 天内接受了门诊抗生素治疗;128 例(1.6%)患者被诊断为 SSI。逻辑回归确定了从手术到抗生素处方的时间、处方的开方地点、处方的长度、抗生素的类型和手术服务,这些是包含在模型中的重要变量。在测试中,最终模型表现出良好的预测价值,C 统计量为 0.81(置信区间:0.71-0.90)。Hosmer-Lemeshow 检验表明模型拟合良好,p 值为 0.97。

我们提出了一种使用 EMR 中易于获得的数据来识别 SSI 发生的模型。与逐个病例报告相结合,该工具可以提高 SSI 识别的准确性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验