Suppr超能文献

新型紫外线(UV)光反应器水消毒的鲁棒优化:神经网络方法。

Robust optimization of a novel ultraviolet (UV) photoreactor for water disinfection: A neural network approach.

机构信息

School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

Chemosphere. 2024 Aug;362:142788. doi: 10.1016/j.chemosphere.2024.142788. Epub 2024 Jul 6.

Abstract

To optimize the ultraviolet (UV) water disinfection process, it is crucial to determine the ideal geometric dimensions of a corresponding model that enhance performance while minimizing the impact of uncertain photoreactor inputs. As water treatment directly affects people's lives, it is crucial to eliminate the risks associated with the non-ideal performance of disinfection photoreactors. Input uncertainties greatly affect photoreactor performance, making it essential to develop a robust optimization algorithm in advance to mitigate these effects and minimize the physical and financial resources required for constructing the photoreactors. In the suggested algorithm, a two-objective genetic algorithm is integrated with a non-intrusive polynomial chaos expansion (PCE) technique. Additionally, the Sobol sampling method is employed to select the necessary samples for understanding the system's behavior. An artificial neural network surrogate model is trained using sufficient data points derived from computational fluid dynamics (CFD) simulations. A novel type of UV photoreactors working based on exterior reflectors is chosen to optimize the process with three uncertain input parameters, including UV lamp power, UV transmittance of water, and diffusive fraction of the reflective surface. In addition, four geometrical design variables are considered to find the optimal configuration of the photoreactor. The standard deviation (SD) and the reciprocal of log reduction value (LRV) are set as the objective functions, calculated using PCE. The optimal design provides a LRV of 3.95 with SD of 0.2. The coefficient of variation (CoV) of the model significantly declines up to 7%, indicating the decreased sensitivity of the photoreactor to the input uncertainties. Additionally, it is discovered that the robust model exhibits minimal sensitivity to changes in reflectivity in various flow rates, and its output variability aligns with the SD obtained through robust optimization.

摘要

为了优化紫外线(UV)水消毒过程,确定增强性能同时最小化不确定光反应器输入影响的相应模型的理想几何尺寸至关重要。由于水处理直接影响人们的生活,因此消除与消毒光反应器非理想性能相关的风险至关重要。输入不确定性对光反应器性能有很大影响,因此必须提前开发强大的优化算法来减轻这些影响,并最小化构建光反应器所需的物理和财务资源。在建议的算法中,将双目标遗传算法与非侵入多项式混沌扩展(PCE)技术相结合。此外,采用 Sobol 采样方法选择理解系统行为所需的必要样本。使用来自计算流体动力学(CFD)模拟的足够数据点训练人工神经网络替代模型。选择一种新型基于外部反射器的 UV 光反应器来优化具有三个不确定输入参数(包括 UV 灯功率、水的 UV 透射率和反射表面的扩散分数)的过程。此外,还考虑了四个几何设计变量来寻找光反应器的最佳配置。将标准偏差(SD)和对数减少值(LRV)的倒数设置为使用 PCE 计算的目标函数。优化设计提供了 3.95 的 LRV 和 0.2 的 SD。模型的变异系数(CoV)显著下降了 7%,表明光反应器对输入不确定性的敏感性降低。此外,还发现稳健模型对各种流速下反射率变化的敏感性最小,并且其输出可变性与稳健优化中获得的 SD 一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验