Suppr超能文献

人工智能与人类临床医生在 X 光片上检测腕骨骨折的准确性比较:系统评价和荟萃分析。

Accuracy of wrist fracture detection on radiographs by artificial intelligence compared to human clinicians. A systematic review and meta-analysis.

机构信息

Department of Radiology, Austin Health, Victoria, Australia.

Department of Radiology, Austin Health, Victoria, Australia.

出版信息

Eur J Radiol. 2024 Sep;178:111593. doi: 10.1016/j.ejrad.2024.111593. Epub 2024 Jun 29.

Abstract

PURPOSE

The aim of the study is to perform a systematic review and meta-analysis comparing the diagnostic performance of artificial intelligence (AI) and human readers in the detection of wrist fractures.

METHOD

This study conducted a systematic review following PRISMA guidelines. Medline and Embase databases were searched for relevant articles published up to August 14, 2023. All included studies reported the diagnostic performance of AI to detect wrist fractures, with or without comparison to human readers. A meta-analysis was performed to calculate the pooled sensitivity and specificity of AI and human experts in detecting distal radius, and scaphoid fractures respectively.

RESULTS

Of 213 identified records, 20 studies were included after abstract screening and full-text review. Nine articles examined distal radius fractures, while eight studies examined scaphoid fractures. One study included distal radius and scaphoid fractures, and two studies examined paediatric distal radius fractures. The pooled sensitivity and specificity for AI in detecting distal radius fractures were 0.92 (95% CI 0.88-0.95) and 0.89 (0.84-0.92), respectively. The corresponding values for human readers were 0.95 (0.91-0.97) and 0.94 (0.91-0.96). For scaphoid fractures, pooled sensitivity and specificity for AI were 0.85 (0.73-0.92) and 0.83 (0.76-0.89), while human experts exhibited 0.71 (0.66-0.76) and 0.93 (0.90-0.95), respectively.

CONCLUSION

The results indicate comparable diagnostic accuracy between AI and human readers, especially for distal radius fractures. For the detection of scaphoid fractures, the human readers were similarly sensitive but more specific. These findings underscore the potential of AI to enhance fracture detection accuracy and improve clinical workflow, rather than to replace human intelligence.

摘要

目的

本研究旨在进行系统评价和荟萃分析,比较人工智能(AI)和人类读者在腕部骨折检测中的诊断性能。

方法

本研究按照 PRISMA 指南进行系统评价。检索了截至 2023 年 8 月 14 日发表的相关文献,包括 Medline 和 Embase 数据库。所有纳入的研究均报告了 AI 检测腕部骨折的诊断性能,包括与人类读者的比较。对 AI 和人类专家检测桡骨远端和舟骨骨折的敏感性和特异性进行荟萃分析。

结果

在 213 条记录中,经过摘要筛选和全文审查后,有 20 项研究被纳入。9 项研究检测桡骨远端骨折,8 项研究检测舟骨骨折。1 项研究包括桡骨远端和舟骨骨折,2 项研究检测儿童桡骨远端骨折。AI 检测桡骨远端骨折的敏感性和特异性的合并值分别为 0.92(95%CI 0.88-0.95)和 0.89(0.84-0.92),而人类读者的相应值分别为 0.95(0.91-0.97)和 0.94(0.91-0.96)。对于舟骨骨折,AI 的合并敏感性和特异性分别为 0.85(0.73-0.92)和 0.83(0.76-0.89),而人类专家的敏感性和特异性分别为 0.71(0.66-0.76)和 0.93(0.90-0.95)。

结论

结果表明 AI 和人类读者的诊断准确性相当,尤其是在桡骨远端骨折的检测中。对于舟骨骨折的检测,人类读者的敏感性相似,但特异性更高。这些发现强调了 AI 在提高骨折检测准确性和改善临床工作流程方面的潜力,而不是替代人类智能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验