Reifenberger Ronald G, Tsai Candace Su-Jung
Department of Physics, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States.
Langmuir. 2024 Jul 23;40(29):14788-14797. doi: 10.1021/acs.langmuir.3c03939. Epub 2024 Jul 10.
The widespread use of engineered nanoparticles (ENPs) poses a potential health hazard to humans, especially to those involved in either nanoparticle manufacturing or the usage and assembly of a final product. In this study, we performed systematic force vs distance experiments (()) using an atomic force microscope (AFM) on fibers commonly used in street clothing and protective laboratory clothing to better characterize the relevant interaction forces between engineered nanoparticles (ENPs) and the contacted fabric fibers. The intent of this study is to identify those factors that influence the interaction of ENPs with fabrics with an aim to improve the efficacy of protective clothing against ENP exposure and mitigate potential health risks. A ∼14 nm diameter AFM SiO tip (with nanoscale radius of curvature) is considered as an effective oxide ENP. Features present (or absent) in a well-executed () AFM experiment provide a fingerprint that distinguishes the relevant forces and interaction mechanisms in play. Measurements of () as a function of relative humidity were also performed to assess the importance of thin surface water layers in binding nanometer-size oxide ENPs to a fabric fiber. The () data indicate the dominant mechanism for adhesion of the oxide tip to the various fabric fibers (cotton, Tyvek (HD polyethylene), polypropylene, and polyester) can be attributed to a van der Waals interaction. The analysis provides no evidence for long-range electrostatic forces or capillary-induced adhesion of the AFM tip to the fibers studied.
工程纳米颗粒(ENPs)的广泛使用对人类构成潜在健康危害,尤其是对那些参与纳米颗粒制造或最终产品使用与组装的人员。在本研究中,我们使用原子力显微镜(AFM)对常用的街头服装和实验室防护服纤维进行了系统的力与距离实验(()),以更好地表征工程纳米颗粒(ENPs)与接触的织物纤维之间的相关相互作用力。本研究的目的是确定那些影响ENPs与织物相互作用的因素,旨在提高防护服对ENP暴露的防护效果并减轻潜在健康风险。一个直径约14 nm的AFM SiO尖端(具有纳米级曲率半径)被视为一种有效的氧化物ENP。在精心执行的() AFM实验中存在(或不存在)的特征提供了一个指纹,可区分起作用的相关力和相互作用机制。还进行了()作为相对湿度函数的测量,以评估薄表面水层在将纳米级氧化物ENPs结合到织物纤维中的重要性。()数据表明,氧化物尖端与各种织物纤维(棉、特卫强(高密度聚乙烯)、聚丙烯和聚酯)粘附的主要机制可归因于范德华相互作用。分析没有提供证据表明存在长程静电力或AFM尖端与所研究纤维之间的毛细管诱导粘附。