Xia Binke, Huang Jingzheng, Li Hongjing, Luo Zhongyuan, Zeng Guihua
State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Hefei National Laboratory, Hefei 230088, China.
Sci Adv. 2024 Jul 12;10(28):eadm8524. doi: 10.1126/sciadv.adm8524. Epub 2024 Jul 10.
The manipulation and metrology of light beams are pivotal for optical science and applications. In particular, achieving ultrahigh precision in the measurement of light beam rotations has been a long-standing challenge. Instead of using quantum probes like entangled photons, we address this challenge by incorporating a quantum strategy called "indefinite time direction" into the parameterizing process of quantum parameter estimation. Leveraging this quantum property of the parameterizing dynamics allows us to maximize the utilization of orbital angular momentum resources for measuring ultrasmall angular rotations of beam profile. Notably, a nanoradian-scale precision of light rotation measurement is lastly achieved in the experiment, which is the highest precision by far to our best knowledge. Furthermore, this scheme holds promise in various optical applications due to the diverse range of manipulable resources offered by photons.
光束的操控和计量对于光学科学及应用至关重要。特别是,在光束旋转测量中实现超高精度一直是一项长期挑战。我们并未使用诸如纠缠光子之类的量子探针,而是通过将一种名为“不确定时间方向”的量子策略纳入量子参数估计的参数化过程来应对这一挑战。利用参数化动力学的这种量子特性,使我们能够最大限度地利用轨道角动量资源来测量光束轮廓的超小角旋转。值得注意的是,最终在实验中实现了纳米弧度级的光旋转测量精度,就我们所知,这是目前最高的精度。此外,由于光子提供了多种多样的可操控资源,该方案在各种光学应用中都具有前景。