Suppr超能文献

机器学习方法在蛋白质-蛋白质对接中的应用。

Machine Learning Methods in Protein-Protein Docking.

机构信息

Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.

出版信息

Methods Mol Biol. 2024;2780:107-126. doi: 10.1007/978-1-0716-3985-6_7.

Abstract

An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more "trivial" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.

摘要

近年来,人们注意到生命科学领域中涉及人工智能(AI)使用的出版物数量呈指数级增长,同时不断有新的建模技术被报道。这些方法的潜力是巨大的——从理解基本的细胞过程到发现新的药物和突破性疗法。在这个领域,对于理解生物系统运作至关重要的蛋白质-蛋白质相互作用的计算研究也不例外。然而,尽管技术发展迅速,新方法的开发也取得了进展,但仍有许多方面难以解决,例如预测蛋白质构象变化,或者更“微不足道”的问题,如大量高质量数据。因此,本章重点介绍了研究蛋白质-蛋白质相互作用的各种 AI 方法,随后描述了为此目的而使用的最新算法和程序。然而,鉴于计算科学这一热门领域的发展速度相当快,在您阅读本章时,所描述的算法的发展或新(更好)算法的出现应该不足为奇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验