Suppr超能文献

基于改进YOLOv5s的陶瓷圆盘表面缺陷检测

Surface defect detection of ceramic disc based on improved YOLOv5s.

作者信息

Pan Haipeng, Li Gang, Feng Hao, Li Qianghua, Sun Peng, Ye Shujia

机构信息

School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.

出版信息

Heliyon. 2024 Jun 13;10(12):e33016. doi: 10.1016/j.heliyon.2024.e33016. eCollection 2024 Jun 30.

Abstract

Addressing the challenges in detecting surface defects on ceramic disks, such as difficulty in detecting small defects, variations in defect sizes, and inaccurate defect localization, we propose an enhanced YOLOv5s algorithm. Firstly, we improve the anchor frame structure of the YOLOv5s model to enhance its generalization ability, enabling robust defect detection for objects of varying sizes. Secondly, we introduce the ECA attention mechanism to improve the model's accuracy in detecting small targets. Under identical experimental conditions, our enhanced YOLOv5s algorithm demonstrates significant improvements, with precision, F1 scores, and mAP values increasing by 3.1 %, 3 %, and 4.5 % respectively. Moreover, the accuracy in detecting crack, damage, slag, and spot defects increases by 0.2 %, 4.7 %, 5.4 %, and 1.9 % respectively. Notably, the detection speed improves from 232 frames/s to 256 frames/s. Comparative analysis with other algorithms reveals superior performance over YOLOv3 and YOLOv4 models, showcasing enhanced capability in identifying small target defects and achieving real-time detection.

摘要

针对陶瓷盘表面缺陷检测中的挑战,如小缺陷检测困难、缺陷尺寸变化以及缺陷定位不准确等问题,我们提出了一种改进的YOLOv5s算法。首先,我们改进了YOLOv5s模型的锚框结构,以增强其泛化能力,从而能够对不同大小的物体进行稳健的缺陷检测。其次,我们引入了ECA注意力机制,以提高模型检测小目标的准确性。在相同的实验条件下,我们改进的YOLOv5s算法有显著提升,精确率、F1分数和平均精度均值(mAP)值分别提高了3.1%、3%和4.5%。此外,在检测裂纹、损伤、熔渣和斑点缺陷方面的准确率分别提高了0.2%、4.7%、5.4%和1.9%。值得注意的是,检测速度从232帧/秒提高到了256帧/秒。与其他算法的对比分析表明,该算法优于YOLOv3和YOLOv4模型,在识别小目标缺陷和实现实时检测方面展现出更强的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1826/11237997/1f9f7c0911ed/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验