Macagnano Antonella, Molinari Fabricio Nicolas, Papa Paolo, Mancini Tiziana, Lupi Stefano, D'Arco Annalisa, Taddei Anna Rita, Serrecchia Simone, De Cesare Fabrizio
Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy.
National Institute of Industrial Technology (INTI), Buenos Aires B1650WAB, Argentina.
Nanomaterials (Basel). 2024 Jun 29;14(13):1123. doi: 10.3390/nano14131123.
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
检测不同植物物种及其器官释放的挥发性有机化合物(VOCs),可以提供有关植物健康以及影响植物的环境因素的宝贵信息。例如,柠檬烯的释放可以作为监测植物健康和检测胁迫的生物标志物。传统的VOC检测方法面临挑战,促使人们提出新的方法。在本研究中,我们提出将静电纺丝、分子印迹和导电纳米纤维相结合来制造柠檬烯传感器。具体而言,聚乙烯吡咯烷酮(PVP)和聚丙烯酸(PAA)分别作为纤维形成剂和空腔形成剂,多壁碳纳米管(MWCNT)增强导电性。我们使用静电纺丝技术开发了一步法整体式分子印迹纤维,其中S(-)-柠檬烯是目标分子。通过紫外光固化法固定功能空腔,然后洗涤目标分子。该过程能够在纳米纤维基质中创建柠檬烯的识别位点,提高传感器性能并简化制造过程。湿度对传感器工作至关重要,最佳条件约为50%相对湿度。传感器对S(-)-柠檬烯迅速响应,在200秒内达到稳定状态。提高纤维密度可改善传感器性能,检测下限(LOD)降至137 ppb。然而,纤维密度过高会降低活性位点的可及性,从而降低灵敏度。值得注意的是,与其他VOCs(如乙醇(在纳米纤维开发中用作溶剂)、芳香族化合物(甲苯)以及另外两种结构相似的单萜类化合物(α-蒎烯和芳樟醇))相比,所制备的纤维状传感器上最薄的垫子对柠檬烯具有最高的选择性(选择性指数:72%)。这些发现强调了所提出的集成方法在精准农业和环境监测等应用中进行选择性VOC检测的潜力。