Suppr超能文献

用于检测胸部X光片肋骨骨折的人工智能模型的开发与验证

Development and Validation of an Artificial Intelligence Model for Detecting Rib Fractures on Chest Radiographs.

作者信息

Lee Kaehong, Lee Sunhee, Kwak Ji Soo, Park Heechan, Oh Hoonji, Koh Jae Chul

机构信息

Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea.

Department of Biostatistics, College of Medicine, Korea University, Seoul 02841, Republic of Korea.

出版信息

J Clin Med. 2024 Jun 30;13(13):3850. doi: 10.3390/jcm13133850.

Abstract

: Chest radiography is the standard method for detecting rib fractures. Our study aims to develop an artificial intelligence (AI) model that, with only a relatively small amount of training data, can identify rib fractures on chest radiographs and accurately mark their precise locations, thereby achieving a diagnostic accuracy comparable to that of medical professionals. : For this retrospective study, we developed an AI model using 540 chest radiographs (270 normal and 270 with rib fractures) labeled for use with Detectron2 which incorporates a faster region-based convolutional neural network (R-CNN) enhanced with a feature pyramid network (FPN). The model's ability to classify radiographs and detect rib fractures was assessed. Furthermore, we compared the model's performance to that of 12 physicians, including six board-certified anesthesiologists and six residents, through an observer performance test. : Regarding the radiographic classification performance of the AI model, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were 0.87, 0.83, and 0.89, respectively. In terms of rib fracture detection performance, the sensitivity, false-positive rate, and free-response receiver operating characteristic (JAFROC) figure of merit (FOM) were 0.62, 0.3, and 0.76, respectively. The AI model showed no statistically significant difference in the observer performance test compared to 11 of 12 and 10 of 12 physicians, respectively. : We developed an AI model trained on a limited dataset that demonstrated a rib fracture classification and detection performance comparable to that of an experienced physician.

摘要

胸部X光检查是检测肋骨骨折的标准方法。我们的研究旨在开发一种人工智能(AI)模型,该模型仅使用相对少量的训练数据,就能在胸部X光片上识别肋骨骨折并准确标记其精确位置,从而实现与医学专业人员相当的诊断准确性。

对于这项回顾性研究,我们使用540张胸部X光片(270张正常,270张有肋骨骨折)开发了一个AI模型,这些X光片已标记供Detectron2使用,Detectron2集成了基于区域的更快卷积神经网络(R-CNN),并通过特征金字塔网络(FPN)进行了增强。评估了该模型对X光片进行分类和检测肋骨骨折的能力。此外,我们通过观察者性能测试,将该模型的性能与12名医生(包括6名获得委员会认证的麻醉师和6名住院医生)的性能进行了比较。

关于AI模型的X光片分类性能,灵敏度、特异性和受试者操作特征曲线下面积(AUROC)分别为0.87、0.83和0.89。在肋骨骨折检测性能方面,灵敏度、假阳性率和自由响应受试者操作特征(JAFROC)品质因数(FOM)分别为0.62、0.3和0.76。在观察者性能测试中,与12名医生中的11名和12名医生中的10名相比,AI模型均无统计学显著差异。

我们开发了一种在有限数据集上训练的AI模型,其肋骨骨折分类和检测性能与经验丰富的医生相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/569f/11242496/0ad1ccb2157c/jcm-13-03850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验