Schorr Noah B, Bhandarkar Austin, McBrayer Josefine D, Talin A Alec
Department of Power Sources R&D, Sandia National Laboratories, Albuquerque, NM 87123, USA.
Department of Material Physics, Sandia National Laboratories, Livermore, CA 94550, USA.
Polymers (Basel). 2024 Jun 21;16(13):1763. doi: 10.3390/polym16131763.
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm, ~9 mA/cm at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
实现具有实用能量和功率密度的可充电电池需要高活性材料负载量的电极,这对固态电池来说仍是一项挑战。在此,我们提出一种基于离子凝胶衍生的固态电解质(SSE)的新策略,以形成复合电极,从而能够以可扩展的方式制造锂离子电池,实现高活性材料负载量(>10 mg/cm²,1C 时约为 9 mA/cm²)。通过调整复合钛酸锂电极中所含前驱体和活性材料的组成,我们在 C/5 倍率下实现了接近理论容量的利用率,并且电池在室温下能够以 5.85 mA/cm²(11.70 A/g)稳定循环,平均库仑效率超过 99%。最后,我们展示了一种完整的聚合物固态电池,其具有复合阳极和含离子凝胶 SSE 的复合磷酸铁锂阴极,能够在 1C 倍率下稳定循环。