Liu Sheng, Pastor-Serrano Oscar, Chen Yizheng, Gopaulchan Matthew, Liang Weixing, Buyyounouski Mark, Pollom Erqi, Le Quynh-Thu, Gensheimer Michael, Dong Peng, Yang Yong, Zou James, Xing Lei
ArXiv. 2025 Apr 8:arXiv:2406.15609v3.
Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires the iterative adjustment of model parameters to balance multiple conflicting objectives. Recent advancements in frontier Artificial Intelligence (AI) models offer promising avenues for addressing the challenges in planning and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning framework that integrates radiation oncology knowledge with the reasoning capabilities of large multi-modal models, such as GPT-4Vision (GPT-4V) from OpenAI.
Via in-context learning, we incorporate clinical requirements and a few (3 in our experiments) approved clinical plans with their optimization settings, enabling GPT-4V to acquire treatment planning domain knowledge. The resulting GPT-RadPlan system is integrated into our in-house inverse treatment planning system through an application programming interface (API). For a given patient, GPT-RadPlan acts as both plan evaluator and planner, first assessing dose distributions and dose-volume histograms (DVHs), and then providing textual feedback on how to improve the plan to match the physician's requirements. In this manner, GPT-RadPlan iteratively refines the plan by adjusting planning parameters, such as weights and dose objectives, based on its suggestions.
The efficacy of the automated planning system is showcased across 17 prostate cancer and 13 head and neck cancer VMAT plans with prescribed doses of 70.2 Gy and 72 Gy, respectively, where we compared GPT-RadPlan results to clinical plans produced by human experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating superior target coverage and reducing organ-at-risk doses by 5 Gy on average (15 percent for prostate and 10-15 percent for head and neck).
放射治疗治疗计划是一个耗时且可能主观的过程,需要对模型参数进行迭代调整以平衡多个相互冲突的目标。前沿人工智能(AI)模型的最新进展为应对计划和临床决策中的挑战提供了有前景的途径。本研究介绍了GPT-RadPlan,这是一个自动化治疗计划框架,它将放射肿瘤学知识与大型多模态模型(如OpenAI的GPT-4Vision(GPT-4V))的推理能力相结合。
通过上下文学习,我们将临床要求和一些(在我们的实验中为3个)批准的临床计划及其优化设置纳入其中,使GPT-4V能够获取治疗计划领域知识。所得的GPT-RadPlan系统通过应用程序编程接口(API)集成到我们的内部逆向治疗计划系统中。对于给定的患者,GPT-RadPlan既充当计划评估器又充当计划制定者,首先评估剂量分布和剂量体积直方图(DVH),然后提供关于如何改进计划以符合医生要求的文本反馈。通过这种方式,GPT-RadPlan根据其建议通过调整计划参数(如权重和剂量目标)来迭代优化计划。
在分别规定剂量为70.2 Gy和72 Gy的17个前列腺癌和13个头颈部癌VMAT计划中展示了自动化计划系统的有效性,我们将GPT-RadPlan的结果与人类专家制定的临床计划进行了比较。在所有情况下,GPT-RadPlan要么优于要么与临床计划匹配,显示出卓越的靶区覆盖,并将危及器官剂量平均降低了5 Gy(前列腺为15%,头颈部为10 - 15%)。