Suppr超能文献

基于MRI的半月板损伤分类与定位的全监督和弱监督深度学习

Fully and Weakly Supervised Deep Learning for Meniscal Injury Classification, and Location Based on MRI.

作者信息

Jiang Kexin, Xie Yuhan, Zhang Xintao, Zhang Xinru, Zhou Beibei, Li Mianwen, Chen Yanjun, Hu Jiaping, Zhang Zhiyong, Chen Shaolong, Yu Keyan, Qiu Changzhen, Zhang Xiaodong

机构信息

Department of Medical Imaging, The Third Affiliated Hospital, Southern Medical University (Academy of Orthopedics Guangdong Province), 183 Zhongshan Ave W, Guangzhou, 510630, China.

School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou, China.

出版信息

J Imaging Inform Med. 2025 Feb;38(1):191-202. doi: 10.1007/s10278-024-01198-4. Epub 2024 Jul 17.

Abstract

Meniscal injury is a common cause of knee joint pain and a precursor to knee osteoarthritis (KOA). The purpose of this study is to develop an automatic pipeline for meniscal injury classification and localization using fully and weakly supervised networks based on MRI images. In this retrospective study, data were from the osteoarthritis initiative (OAI). The MR images were reconstructed using a sagittal intermediate-weighted fat-suppressed turbo spin-echo sequence. (1) We used 130 knees from the OAI to develop the LGSA-UNet model which fuses the features of adjacent slices and adjusts the blocks in Siam to enable the central slice to obtain rich contextual information. (2) One thousand seven hundred and fifty-six knees from the OAI were included to establish segmentation and classification models. The segmentation model achieved a DICE coefficient ranging from 0.84 to 0.93. The AUC values ranged from 0.85 to 0.95 in the binary models. The accuracy for the three types of menisci (normal, tear, and maceration) ranged from 0.60 to 0.88. Furthermore, 206 knees from the orthopedic hospital were used as an external validation data set to evaluate the performance of the model. The segmentation and classification models still performed well on the external validation set. To compare the diagnostic performances between the deep learning (DL) models and radiologists, the external validation sets were sent to two radiologists. The binary classification model outperformed the diagnostic performance of the junior radiologist (0.82-0.87 versus 0.74-0.88). This study highlights the potential of DL in knee meniscus segmentation and injury classification which can help improve diagnostic efficiency.

摘要

半月板损伤是膝关节疼痛的常见原因,也是膝关节骨关节炎(KOA)的先兆。本研究的目的是基于MRI图像,使用全监督和弱监督网络开发一种用于半月板损伤分类和定位的自动流程。在这项回顾性研究中,数据来自骨关节炎倡议(OAI)。MR图像采用矢状位中等加权脂肪抑制快速自旋回波序列重建。(1)我们使用来自OAI的130个膝关节来开发LGSA-UNet模型,该模型融合相邻切片的特征并调整暹罗网络中的模块,以使中央切片能够获得丰富的上下文信息。(2)纳入来自OAI的1756个膝关节以建立分割和分类模型。分割模型的DICE系数范围为0.84至0.93。二元模型的AUC值范围为0.85至0.95。三种半月板类型(正常、撕裂和浸渍)的准确率范围为0.60至0.88。此外,将来自骨科医院的206个膝关节用作外部验证数据集来评估模型的性能。分割和分类模型在外部验证集上仍然表现良好。为了比较深度学习(DL)模型和放射科医生之间的诊断性能,将外部验证集发送给两位放射科医生。二元分类模型的诊断性能优于初级放射科医生(0.82 - 0.87对0.74 - 0.88)。本研究突出了DL在膝关节半月板分割和损伤分类方面的潜力,这有助于提高诊断效率。

相似文献

1
Fully and Weakly Supervised Deep Learning for Meniscal Injury Classification, and Location Based on MRI.
J Imaging Inform Med. 2025 Feb;38(1):191-202. doi: 10.1007/s10278-024-01198-4. Epub 2024 Jul 17.
2
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov.
3
Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN.
Eur J Med Res. 2022 Nov 14;27(1):247. doi: 10.1186/s40001-022-00883-w.
5
Multitask learning for automatic detection of meniscal injury on 3D knee MRI.
J Orthop Res. 2025 Mar;43(3):703-713. doi: 10.1002/jor.26024. Epub 2024 Dec 2.
7
Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI.
J Magn Reson Imaging. 2023 Mar;57(3):740-749. doi: 10.1002/jmri.28284. Epub 2022 Jun 1.
8
An efficient and fast computer-aided method for fully automated diagnosis of meniscal tears from magnetic resonance images.
Artif Intell Med. 2019 Jun;97:118-130. doi: 10.1016/j.artmed.2018.11.008. Epub 2018 Dec 5.
10

引用本文的文献

1
MV2SwimNet: A lightweight transformer-based hybrid model for knee meniscus tears detection.
PLoS One. 2025 Aug 27;20(8):e0330444. doi: 10.1371/journal.pone.0330444. eCollection 2025.
2
Diagnosis of knee meniscal injuries using artificial intelligence: A systematic review and meta-analysis of diagnostic performance.
PLoS One. 2025 Jun 24;20(6):e0326339. doi: 10.1371/journal.pone.0326339. eCollection 2025.

本文引用的文献

1
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database.
Front Bioeng Biotechnol. 2021 Dec 2;9:747217. doi: 10.3389/fbioe.2021.747217. eCollection 2021.
3
Fusion of CNN1 and CNN2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography.
Comput Methods Programs Biomed. 2021 Nov;211:106297. doi: 10.1016/j.cmpb.2021.106297. Epub 2021 Jul 22.
4
TransMed: Transformers Advance Multi-Modal Medical Image Classification.
Diagnostics (Basel). 2021 Jul 31;11(8):1384. doi: 10.3390/diagnostics11081384.
5
The Epidemiology of Meniscus Injury.
Sports Med Arthrosc Rev. 2021 Sep 1;29(3):e24-e33. doi: 10.1097/JSA.0000000000000329.
6
Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies.
Radiol Artif Intell. 2021 Jan 20;3(3):e200165. doi: 10.1148/ryai.2021200165. eCollection 2021 May.
7
8
Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference.
Skeletal Radiol. 2020 Aug;49(8):1207-1217. doi: 10.1007/s00256-020-03410-2. Epub 2020 Mar 13.
9
Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
Magn Reson Med. 2020 Jul;84(1):437-449. doi: 10.1002/mrm.28111. Epub 2019 Dec 2.
10
Meniscus Form and Function.
Clin Sports Med. 2020 Jan;39(1):1-12. doi: 10.1016/j.csm.2019.08.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验