Suppr超能文献

用于固相合成的介电泳珠滴反应器。

Dielectrophoretic bead-droplet reactor for solid-phase synthesis.

作者信息

Padhy Punnag, Zaman Mohammad Asif, Jensen Michael Anthony, Cheng Yao-Te, Huang Yogi, Wu Mo, Galambos Ludwig, Davis Ronald Wayne, Hesselink Lambertus

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.

Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.

出版信息

Nat Commun. 2024 Jul 22;15(1):6159. doi: 10.1038/s41467-024-49284-z.

Abstract

Solid-phase synthesis underpins many advances in synthetic and combinatorial chemistry, biology, and material science. The immobilization of a reacting species on the solid support makes interfacing of reagents an important challenge in this approach. In traditional synthesis columns, this leads to reaction errors that limit the product yield and necessitates excess consumption of the mobile reagent phase. Although droplet microfluidics can mitigate these problems, its adoption is fundamentally limited by the inability to controllably interface microbeads and reagent droplets. Here, we introduce Dielectrophoretic Bead-Droplet Reactor as a physical method to implement solid-phase synthesis on individual functionalized microbeads by encapsulating and ejecting them from microdroplets by tuning the supply voltage. Proof-of-concept demonstration of the enzymatic coupling of fluorescently labeled nucleotides onto the bead using this reactor yielded a 3.2-fold higher fidelity over columns through precise interfacing of individual microreactors and beads. Our work combines microparticle manipulation and droplet microfluidics to address a long-standing problem in solid-phase synthesis with potentially wide-ranging implications.

摘要

固相合成是合成化学、组合化学、生物学和材料科学诸多进展的基础。将反应物种固定在固体支持物上使得试剂的界面连接成为这种方法中的一个重要挑战。在传统合成柱中,这会导致反应误差,限制产物产率,并需要过量消耗流动试剂相。尽管微滴微流控技术可以缓解这些问题,但其应用从根本上受到无法可控地连接微珠和试剂微滴的限制。在此,我们引入介电泳珠-滴反应器,这是一种物理方法,通过调节供应电压将单个功能化微珠封装在微滴中并从微滴中喷出,从而在单个功能化微珠上实现固相合成。使用该反应器将荧光标记的核苷酸酶促偶联到珠子上的概念验证演示通过单个微反应器和珠子的精确界面连接,比柱合成的保真度高3.2倍。我们的工作将微粒操纵和微滴微流控技术相结合,以解决固相合成中一个长期存在的问题,具有潜在的广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48cd/11263596/75eb9efbcee2/41467_2024_49284_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验