Suppr超能文献

一种用于稳健多维特定椭球拟合的贝叶斯方法。

A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting.

作者信息

Zhao Mingyang, Jia Xiaohong, Ma Lei, Shi Yuke, Jiang Jingen, Li Qizhai, Yan Dong-Ming, Huang Tiejun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10106-10123. doi: 10.1109/TPAMI.2024.3432913. Epub 2024 Nov 6.

Abstract

This work presents a novel and effective method for fitting multidimensional ellipsoids (i.e., ellipsoids embedded in [Formula: see text]) to scattered data in the contamination of noise and outliers. Unlike conventional algebraic or geometric fitting paradigms that assume each measurement point is a noisy version of its nearest point on the ellipsoid, we approach the problem as a Bayesian parameter estimate process and maximize the posterior probability of a certain ellipsoidal solution given the data. We establish a more robust correlation between these points based on the predictive distribution within the Bayesian framework, i.e., considering each model point as a potential source for generating each measurement. Concretely, we incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain, ensuring ellipsoid-specific results regardless of inputs. We then establish the connection between measurement point and model data via Bayes' rule to enhance the method's robustness against noise. Due to independent of spatial dimensions, the proposed method not only delivers high-quality fittings to challenging elongated ellipsoids but also generalizes well to multidimensional spaces. To address outlier disturbances, often overlooked by previous approaches, we further introduce a uniform distribution on top of the predictive distribution to significantly enhance the algorithm's robustness against outliers. Thanks to the uniform prior, our maximum a posterior probability coincides with a more tractable maximum likelihood estimation problem, which is subsequently solved by a numerically stable Expectation Maximization (EM) framework. Moreover, we introduce an ε-accelerated technique to expedite the convergence of EM considerably. We also investigate the relationship between our algorithm and conventional least-squares-based ones, during which we theoretically prove our method's superior robustness. To the best of our knowledge, this is the first comprehensive method capable of performing multidimensional ellipsoid-specific fitting within the Bayesian optimization paradigm under diverse disturbances. We evaluate it across lower and higher dimensional spaces in the presence of heavy noise, outliers, and substantial variations in axis ratios. Also, we apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks. In all these test contexts, our method consistently delivers flexible, robust, ellipsoid-specific performance, and achieves the state-of-the-art results.

摘要

这项工作提出了一种新颖且有效的方法,用于在存在噪声和离群值干扰的情况下,将多维椭球体(即嵌入在[公式:见原文]中的椭球体)拟合到离散数据。与传统的代数或几何拟合范式不同,传统范式假设每个测量点是其在椭球体上最近点的噪声版本,我们将该问题视为贝叶斯参数估计过程,并在给定数据的情况下最大化某个椭球体解的后验概率。我们基于贝叶斯框架内的预测分布在这些点之间建立更稳健的相关性,即把每个模型点视为生成每个测量值的潜在来源。具体而言,我们纳入一个均匀先验分布,以在椭球域内约束对原始参数的搜索,确保无论输入如何都能得到特定于椭球体的结果。然后,我们通过贝叶斯规则建立测量点与模型数据之间的联系,以增强该方法对噪声的鲁棒性。由于与空间维度无关,所提出的方法不仅能为具有挑战性的细长椭球体提供高质量的拟合,还能很好地推广到多维空间。为了解决先前方法常常忽略的离群值干扰问题,我们在预测分布之上进一步引入均匀分布,以显著增强算法对离群值的鲁棒性。得益于均匀先验,我们的最大后验概率与一个更易于处理的最大似然估计问题一致,随后通过数值稳定的期望最大化(EM)框架求解。此外,我们引入一种ε加速技术,以大幅加快EM的收敛速度。我们还研究了我们的算法与传统基于最小二乘法的算法之间的关系,在此过程中我们从理论上证明了我们方法具有更强的鲁棒性。据我们所知,这是第一种能够在贝叶斯优化范式下,在各种干扰条件下进行多维椭球体特定拟合的综合方法。我们在存在大量噪声、离群值以及轴比存在显著变化的低维和高维空间中对其进行评估。此外,我们将其应用于广泛的实际应用中,如显微镜细胞计数、三维重建、几何形状逼近以及磁力计校准任务。在所有这些测试场景中,我们的方法始终能提供灵活、稳健、特定于椭球体的性能,并取得了当前最优的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验