Agarwal Akshay, Kasaei Leila, He Xinglin, Kitichotkul Ruangrawee, Hitit Oğuz Kağan, Peng Minxu, Schultz J Albert, Feldman Leonard C, Goyal Vivek K
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215.
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2401246121. doi: 10.1073/pnas.2401246121. Epub 2024 Jul 25.
Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here, we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3[Formula: see text] dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.
现代科学依赖于纳米尺度成像,这通常通过检测由高度聚焦的入射带电粒子束产生的二次电子的过程来实现。多种类型的测量噪声限制了图像质量与入射粒子剂量之间的最终权衡,这可能会妨碍对剂量敏感样本进行有效的成像。现有的提高图像质量的方法并不能从根本上减少噪声源。此外,由于缺乏赋予物理意义尺度的方法,使得图像只是定性的。在此,我们引入离子计数辅助显微镜(ICAM),这是一种定量成像技术,它使用对二次电子产率的统计原理估计。通过在数据收集方面易于实现的改变,ICAM能大幅降低源散粒噪声。在氦离子显微镜中,我们展示了剂量降低3倍,并且这些实验结果与理论性能预测结果吻合良好。ICAM有助于对易碎样本进行成像,并且可能会使使用较重粒子成像更具吸引力。