Suppr超能文献

通过内部状态增强视觉强化学习的泛化能力

Generalization Enhancement of Visual Reinforcement Learning through Internal States.

作者信息

Yang Hanlin, Zhu William, Zhu Xianchao

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China.

出版信息

Sensors (Basel). 2024 Jul 12;24(14):4513. doi: 10.3390/s24144513.

Abstract

Visual reinforcement learning is important in various practical applications, such as video games, robotic manipulation, and autonomous navigation. However, a major challenge in visual reinforcement learning is the generalization to unseen environments, that is, how agents manage environments with previously unseen backgrounds. This issue is triggered mainly by the high unpredictability inherent in high-dimensional observation space. To deal with this problem, techniques including domain randomization and data augmentation have been explored; nevertheless, these methods still cannot attain a satisfactory result. This paper proposes a new method named Internal States Simulation Auxiliary (ISSA), which uses internal states to improve generalization in visual reinforcement learning tasks. Our method contains two agents, a teacher agent and a student agent: the teacher agent has the ability to directly access the environment's internal states and is used to facilitate the student agent's training; the student agent receives initial guidance from the teacher agent and subsequently continues to learn independently. From another perspective, our method can be divided into two phases, the transfer learning phase and traditional visual reinforcement learning phase. In the first phase, the teacher agent interacts with environments and imparts knowledge to the vision-based student agent. With the guidance of the teacher agent, the student agent is able to discover more effective visual representations that address the high unpredictability of high-dimensional observation space. In the next phase, the student agent autonomously learns from the visual information in the environment, and ultimately, it becomes a vision-based reinforcement learning agent with enhanced generalization. The effectiveness of our method is evaluated using the DMControl Generalization Benchmark and the DrawerWorld with texture distortions. Preliminary results indicate that our method significantly improves generalization ability and performance in complex continuous control tasks.

摘要

视觉强化学习在各种实际应用中都很重要,例如电子游戏、机器人操纵和自主导航。然而,视觉强化学习中的一个主要挑战是如何推广到未见环境,即智能体如何处理具有以前未见背景的环境。这个问题主要是由高维观测空间中固有的高度不可预测性引发的。为了解决这个问题,人们探索了包括领域随机化和数据增强在内的技术;然而,这些方法仍然无法取得令人满意的结果。本文提出了一种名为内部状态模拟辅助(ISSA)的新方法,该方法使用内部状态来提高视觉强化学习任务中的泛化能力。我们的方法包含两个智能体,一个教师智能体和一个学生智能体:教师智能体能够直接访问环境的内部状态,并用于促进学生智能体的训练;学生智能体从教师智能体接收初始指导,随后继续独立学习。从另一个角度来看,我们的方法可以分为两个阶段,迁移学习阶段和传统视觉强化学习阶段。在第一阶段,教师智能体与环境交互,并将知识传授给基于视觉的学生智能体。在教师智能体的指导下,学生智能体能够发现更有效的视觉表示,以应对高维观测空间的高度不可预测性。在下一阶段,学生智能体从环境中的视觉信息中自主学习,最终成为一个具有增强泛化能力的基于视觉的强化学习智能体。我们使用DMControl泛化基准和带有纹理失真的DrawerWorld对我们方法的有效性进行了评估。初步结果表明,我们的方法显著提高了复杂连续控制任务中的泛化能力和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ead/11280822/87870e4a76a0/sensors-24-04513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验