Suppr超能文献

对比体素聚类在脑网络多尺度建模中的应用。

Contrastive voxel clustering for multiscale modeling of brain network.

机构信息

Johns Hopkins University School of Medicine, Baltimore, USA.

School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Neuroimage. 2024 Aug 15;297:120755. doi: 10.1016/j.neuroimage.2024.120755. Epub 2024 Jul 27.

Abstract

Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.

摘要

静息态功能磁共振成像 (fMRI) 为分析脑区之间的功能连接提供了一种有效的方法。全面了解大脑功能需要对神经结构的多尺度层进行统一描述。然而,现有的脑网络建模方法通常通过在大脑区域水平上对基于 fMRI 的分析平均血氧水平依赖 (BOLD) 信号来简化这一特性,假设 BOLD 信号在每个大脑区域内是均匀的,从而忽略了每个感兴趣区域 (ROI) 内体素的异质性。本研究提出了一种新的多阶段自监督学习框架,用于多尺度脑网络分析,该框架可有效地从体素到 ROI 并直至样本水平上描绘大脑功能。提出了一种对比体素聚类 (CVC) 模块,同时学习体素级特征和聚类分配,这确保了在最细的体素级保留信息丰富的聚类特征,同时保持功能连接特征。此外,基于 CVC 在体素水平上提取的特征和聚类分配,构建了基于大脑 ROI 的图神经网络 (BR-GNN),以提取大脑 ROI 水平上的功能连接特征,并用于样本水平预测,该方法将功能聚类图与预先建立的结构 ROI 图相结合,创建了一个更全面、更有效的分析工具。在两个数据集上进行了实验,通过分析体素水平聚类结果和大脑 ROI 水平功能特征,说明了所提出方法的有效性和泛化能力。该方法为大脑功能连接分析提供了一种多尺度建模框架,将进一步用于其他大脑疾病的识别。代码可在 https://github.com/yanliugroup/fmri-cvc 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验