Johns Hopkins University School of Medicine, Baltimore, USA.
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.
Neuroimage. 2024 Aug 15;297:120755. doi: 10.1016/j.neuroimage.2024.120755. Epub 2024 Jul 27.
Resting-state functional magnetic resonance imaging (fMRI) provides an efficient way to analyze the functional connectivity between brain regions. A comprehensive understanding of brain functionality requires a unified description of multi-scale layers of neural structure. However, existing brain network modeling methods often simplify this property by averaging Blood oxygen level dependent (BOLD) signals at the brain region level for fMRI-based analysis with the assumption that BOLD signals are homogeneous within each brain region, which ignores the heterogeneity of voxels within each Region of Interest (ROI). This study introduces a novel multi-stage self-supervised learning framework for multiscale brain network analysis, which effectively delineates brain functionality from voxel to ROIs and up to sample level. A Contrastive Voxel Clustering (CVC) module is proposed to simultaneously learn the voxel-level features and clustering assignments, which ensures the retention of informative clustering features at the finest voxel-level and concurrently preserves functional connectivity characteristics. Additionally, based on the extracted features and clustering assignments at the voxel level by CVC, a Brain ROI-based Graph Neural Network (BR-GNN) is built to extract functional connectivity features at the brain ROI-level and used for sample-level prediction, which integrates the functional clustering maps with the pre-established structural ROI maps and creates a more comprehensive and effective analytical tool. Experiments are performed on two datasets, which illustrate the effectiveness and generalization ability of the proposed method by analyzing voxel-level clustering results and brain ROIs-level functional characteristics. The proposed method provides a multiscale modeling framework for brain functional connectivity analysis, which will be further used for other brain disease identification. Code is available at https://github.com/yanliugroup/fmri-cvc.
静息态功能磁共振成像 (fMRI) 为分析脑区之间的功能连接提供了一种有效的方法。全面了解大脑功能需要对神经结构的多尺度层进行统一描述。然而,现有的脑网络建模方法通常通过在大脑区域水平上对基于 fMRI 的分析平均血氧水平依赖 (BOLD) 信号来简化这一特性,假设 BOLD 信号在每个大脑区域内是均匀的,从而忽略了每个感兴趣区域 (ROI) 内体素的异质性。本研究提出了一种新的多阶段自监督学习框架,用于多尺度脑网络分析,该框架可有效地从体素到 ROI 并直至样本水平上描绘大脑功能。提出了一种对比体素聚类 (CVC) 模块,同时学习体素级特征和聚类分配,这确保了在最细的体素级保留信息丰富的聚类特征,同时保持功能连接特征。此外,基于 CVC 在体素水平上提取的特征和聚类分配,构建了基于大脑 ROI 的图神经网络 (BR-GNN),以提取大脑 ROI 水平上的功能连接特征,并用于样本水平预测,该方法将功能聚类图与预先建立的结构 ROI 图相结合,创建了一个更全面、更有效的分析工具。在两个数据集上进行了实验,通过分析体素水平聚类结果和大脑 ROI 水平功能特征,说明了所提出方法的有效性和泛化能力。该方法为大脑功能连接分析提供了一种多尺度建模框架,将进一步用于其他大脑疾病的识别。代码可在 https://github.com/yanliugroup/fmri-cvc 上获得。