Suppr超能文献

用于预测整个重症监护病房(ICU)期间有创和无创通气使用情况的机器学习建模

Machine learning modelling for predicting the utilization of invasive and non-invasive ventilation throughout the ICU duration.

作者信息

Schwager Emma, Nabian Mohsen, Liu Xinggang, Feng Ting, French Robin, Amelung Pam, Atallah Louis, Badawi Omar

机构信息

Philips Research North America Cambridge Massachusetts USA.

Philips Clinical AI and Analytics New Brunswick New Jersey USA.

出版信息

Healthc Technol Lett. 2024 Feb 20;11(4):252-257. doi: 10.1049/htl2.12081. eCollection 2024 Aug.

Abstract

The goal of this work is to develop a Machine Learning model to predict the need for both invasive and non-invasive mechanical ventilation in intensive care unit (ICU) patients. Using the Philips eICU Research Institute (ERI) database, 2.6 million ICU patient data from 2010 to 2019 were analyzed. This data was randomly split into training (63%), validation (27%), and test (10%) sets. Additionally, an external test set from a single hospital from the ERI database was employed to assess the model's generalizability. Model performance was determined by comparing the model probability predictions with the actual incidence of ventilation use, either invasive or non-invasive. The model demonstrated a prediction performance with an AUC of 0.921 for overall ventilation, 0.937 for invasive, and 0.827 for non-invasive. Factors such as high Glasgow Coma Scores, younger age, lower BMI, and lower PaCO2 were highlighted as indicators of a lower likelihood for the need for ventilation. The model can serve as a retrospective benchmarking tool for hospitals to assess ICU performance concerning mechanical ventilation necessity. It also enables analysis of ventilation strategy trends and risk-adjusted comparisons, with potential for future testing as a clinical decision tool for optimizing ICU ventilation management.

摘要

这项工作的目标是开发一种机器学习模型,以预测重症监护病房(ICU)患者对有创和无创机械通气的需求。利用飞利浦电子重症监护病房研究所(ERI)数据库,对2010年至2019年的260万例ICU患者数据进行了分析。这些数据被随机分为训练集(63%)、验证集(27%)和测试集(10%)。此外,还使用了来自ERI数据库中一家医院的外部测试集来评估模型的通用性。通过将模型概率预测与有创或无创通气使用的实际发生率进行比较来确定模型性能。该模型在总体通气方面的预测性能AUC为0.921,有创通气为0.937,无创通气为0.827。高格拉斯哥昏迷评分、年轻、较低的体重指数和较低的动脉血二氧化碳分压等因素被突出显示为通气需求可能性较低的指标。该模型可作为医院评估ICU在机械通气必要性方面表现的回顾性基准工具。它还能够分析通气策略趋势和风险调整后的比较,有潜力作为优化ICU通气管理的临床决策工具进行未来测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb3c/11294931/b2452861a9b7/HTL2-11-252-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验