Department of Chemistry, Emory University, Atlanta, GA, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Nat Nanotechnol. 2024 Nov;19(11):1674-1685. doi: 10.1038/s41565-024-01723-0. Epub 2024 Aug 5.
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signalling. Although a variety of molecular probes have been proposed to quantify TCR mechanics, these probes are immobilized on hard substrates, and thus fail to reveal fluid TCR-antigen interactions in the physiological context of cell membranes. Here we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We quantified the mechanical forces at fluid TCR-antigen bonds and observed their dependence on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. The programmability of DOTS allows us to tether these to microparticles to mechanically screen antigens in high throughput using flow cytometry. Additionally, DOTS were anchored onto live B cells, allowing quantification of TCR mechanics at immune cell-cell junctions.
T 细胞受体 (TCR) 被认为是一种力感受器,这意味着它将机械力传递给其抗原,并利用该力来放大 TCR 信号的特异性和幅度。尽管已经提出了多种分子探针来定量 TCR 力学,但这些探针被固定在坚硬的基质上,因此无法揭示细胞膜生理环境中流体 TCR-抗原相互作用。在这里,我们开发了 DNA 折纸张力传感器 (DOTS),它在 DNA 折纸基板上带有力传感器,允许在动态膜间连接点上绘制 TCR 机械转导图。我们量化了流体 TCR-抗原键的机械力,并观察到它们对细胞状态、抗原流动性、抗原效力、抗原高度和 F-肌动蛋白活性的依赖性。DOTS 的可编程性允许我们将其系在微颗粒上,以便使用流式细胞术进行高通量的抗原机械筛选。此外,DOTS 被固定在活 B 细胞上,允许在免疫细胞-细胞连接点定量 TCR 力学。