Hromada Carina, Heimel Patrick, Kerbl Markus, Gál László, Nürnberger Sylvia, Schaedl Barbara, Ferguson James, Swiadek Nicole, Monforte Xavier, Heinzel Johannes C, Nógrádi Antal, Teuschl-Woller Andreas H, Hercher David
Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.
Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Neural Regen Res. 2025 Jun 1;20(6):1789-1800. doi: 10.4103/NRR.NRR-D-23-01518. Epub 2024 May 13.
JOURNAL/nrgr/04.03/01300535-202506000-00029/figure1/v/2024-08-05T133530Z/r/image-tiff Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits (tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects (typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk+ tNGCs with the tubes without holes (silk- tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk+ tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk+ group was found compared with autologous nerve transplants and silk-, accompanied by improved axon regeneration at the distal coaptation point compared with the silk- tNGCs at 7 weeks postoperatively. In the 15-mm (critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk+ tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk+ tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
《期刊》/nrgr/04.03/01300535 - 202506000 - 00029/图1/v/2024 - 08 - 05T133530Z/图像 - tiff 周围神经损伤会导致严重的运动和感觉功能障碍。由于用于神经修复的自体神经移植的可用性非常有限,因此人们正在寻求替代治疗策略,包括使用管状神经引导导管(tNGC)。然而,使用tNGC会导致功能恢复不佳以及再生组织的中央坏死,这限制了它们在短神经损伤缺损(通常短于3厘米)中的应用。鉴于血管化在神经再生中的重要性,我们推测使血管从周围组织生长到tNGC内的再生神经中,将有助于消除坏死过程并促进再生。在本研究中,我们报道了在基于丝的tNGC的管壁上应用宏观孔洞,并将这些改进的丝 + tNGC与无孔管(丝 - tNGC)以及自体神经移植在大鼠8毫米坐骨神经缺损模型中的各种特征进行了比较。通过结合微计算机断层扫描和组织学分析,我们能够证明使用丝 + tNGC可诱导血管从相邻组织生长到管腔内新生血管形成。与自体神经移植和丝 - 组相比,丝 + 组中发现的血管数量明显更多,并且与术后7周的丝 - tNGC相比,在远端吻合点处轴突再生得到改善。在15毫米(临界尺寸)坐骨神经缺损模型中,我们再次观察到血管通过丝 + tNGC的管壁明显向内生长,但术后12周时功能恢复并未改善。我们的数据证明,大孔tNGC可增加再生神经的血管供应,并在短缺损模型中促进轴突再生的改善,但在临界尺寸缺损模型中则不然。这项研究表明,对包含宏观孔洞的丝 + tNGC方法进行进一步优化,可能会产生适用于未来临床应用的改进移植技术。