Cichosz Simon Lebech, Kronborg Thomas, Laugesen Esben, Hangaard Stine, Fleischer Jesper, Hansen Troels Krarup, Jensen Morten Hasselstrøm, Poulsen Per Løgstrup, Vestergaard Peter
Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
Diabetes Technol Ther. 2025 Jan;27(1):34-44. doi: 10.1089/dia.2024.0226. Epub 2024 Aug 26.
This study aims to investigate the continuum of glucose control from normoglycemia to dysglycemia (HbA1c ≥ 5.7%/39 mmol/mol) using metrics derived from continuous glucose monitoring (CGM). In addition, we aim to develop a machine learning-based classification model to classify dysglycemia based on observed patterns. Data from five distinct studies, each featuring at least two days of CGM, were pooled. Participants included individuals classified as healthy, with prediabetes, or with type 2 diabetes mellitus (T2DM). Various CGM indices were extracted and compared across groups. The data set was split 70/30 for training and testing two classification models (XGBoost/Logistic Regression) to differentiate between prediabetes or dysglycemia and the healthy group. The analysis included 836 participants (healthy: = 282; prediabetes: = 133; T2DM: = 432). Across all CGM indices, a progressive shift was observed from the healthy group to those with diabetes ( < 0.001). Statistically significant differences ( < 0.01) were noted in mean glucose, time below range, time above 140 mg/dl, mobility, multiscale complexity index, and glycemic risk index when transitioning from health to prediabetes. The XGBoost models achieved the highest receiver operating characteristic area under the curve values on the test data set ranging from 0.91 [confidence interval (CI): 0.87-0.95] (prediabetes identification) to 0.97 [CI: 0.95-0.98] (dysglycemia identification). Our findings demonstrate a gradual deterioration of glucose homeostasis and increased glycemic variability across the spectrum from normo- to dysglycemia, as evidenced by CGM metrics. The performance of CGM-based indices in classifying healthy individuals and those with prediabetes and diabetes is promising.
本研究旨在使用连续血糖监测(CGM)得出的指标,调查从正常血糖到血糖异常(糖化血红蛋白[HbA1c]≥5.7%/39 mmol/mol)的血糖控制连续体。此外,我们旨在开发一种基于机器学习的分类模型,根据观察到的模式对血糖异常进行分类。汇总了五项不同研究的数据,每项研究至少有两天的CGM数据。参与者包括被分类为健康、患有糖尿病前期或2型糖尿病(T2DM)的个体。提取了各种CGM指标并在各组之间进行比较。将数据集按70/30分割用于训练和测试两个分类模型(XGBoost/逻辑回归),以区分糖尿病前期或血糖异常与健康组。分析纳入了836名参与者(健康:n = 282;糖尿病前期:n = 133;T2DM:n = 432)。在所有CGM指标中,观察到从健康组到糖尿病组有渐进性变化(P < 0.001)。从健康状态转变为糖尿病前期时,在平均血糖、低于范围时间、高于140 mg/dl的时间、活动度、多尺度复杂性指数和血糖风险指数方面存在统计学显著差异(P < 0.01)。XGBoost模型在测试数据集上的曲线下面积值最高,范围从0.91[置信区间(CI):0.87 - 0.95](糖尿病前期识别)到0.97[CI:0.95 - 0.98](血糖异常识别)。我们的研究结果表明,从正常血糖到血糖异常的整个范围内,血糖稳态逐渐恶化,血糖变异性增加,这由CGM指标证明。基于CGM的指标在对健康个体以及患有糖尿病前期和糖尿病的个体进行分类方面表现出良好前景。