Suppr超能文献

一种用于检测先天性心脏病患儿交界性异位性心动过速的多模态深度学习工具。

A multimodal deep learning tool for detection of junctional ectopic tachycardia in children with congenital heart disease.

作者信息

Ju Yilong, Waugh Jamie L S, Singh Satpreet, Rusin Craig G, Patel Ankit B, Jain Parag N

机构信息

Department of Computer Science, Rice University, Houston, Texas.

Division of Research, Medical Informatics Corp., Houston, Texas.

出版信息

Heart Rhythm O2. 2024 May 16;5(7):452-459. doi: 10.1016/j.hroo.2024.04.014. eCollection 2024 Jul.

Abstract

BACKGROUND

Junctional ectopic tachycardia (JET) is a prevalent life-threatening arrhythmia in children with congenital heart disease. It has a marked resemblance to normal sinus rhythm, often leading to delay in diagnosis and management.

OBJECTIVE

The study sought to develop a novel multimodal automated arrhythmia detection tool that outperforms existing JET detection tools.

METHODS

This is a cohort study performed on 40 patients with congenital heart disease at Texas Children's Hospital. Electrocardiogram and central venous pressure waveform data produced by bedside monitors are captured by the Sickbay platform. Convolutional neural networks (CNNs) were trained to classify each heartbeat as either normal sinus rhythm or JET based only on raw electrocardiogram signals.

RESULTS

Our best model improved the area under the curve from 0.948 to 0.952 and the true positive rate at 5% false positive rate from 71.8% to 80.6%. Using a 3-model ensemble further improved the area under the curve to 0.953 and the true positive rate at 5% false positive rate to 85.2%. Results on a subset of data show that adding central venous pressure can significantly improve area under the receiver-operating characteristic curve from 0.646 to 0.825.

CONCLUSION

This study validates the efficacy of deep neural networks to notably improve JET detection accuracy. We have built a performant and reliable model that can be used to create a bedside alarm that diagnoses JET, allowing for precise diagnosis of this life-threatening postoperative arrhythmia and prompt intervention. Future validation of the model in a larger cohort is needed.

摘要

背景

交界性异位性心动过速(JET)是先天性心脏病患儿中一种常见的危及生命的心律失常。它与正常窦性心律极为相似,常导致诊断和治疗延迟。

目的

本研究旨在开发一种新型的多模态自动心律失常检测工具,其性能优于现有的JET检测工具。

方法

这是一项对德克萨斯儿童医院40例先天性心脏病患者进行的队列研究。由床边监护仪产生的心电图和中心静脉压波形数据由病房平台采集。卷积神经网络(CNN)仅基于原始心电图信号进行训练,将每个心跳分类为正常窦性心律或JET。

结果

我们的最佳模型将曲线下面积从0.948提高到0.952,在5%假阳性率下的真阳性率从71.8%提高到80.6%。使用三模型集成进一步将曲线下面积提高到0.953,在5%假阳性率下的真阳性率提高到85.2%。部分数据结果表明,添加中心静脉压可将受试者工作特征曲线下面积从0.646显著提高到0.825。

结论

本研究验证了深度神经网络显著提高JET检测准确性的有效性。我们构建了一个高性能且可靠的模型,可用于创建一个诊断JET的床边警报,从而能够精确诊断这种危及生命的术后心律失常并及时进行干预。未来需要在更大的队列中对该模型进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af0c/11305876/ddf735727489/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验