Suppr超能文献

SARS-CoV-2 木瓜蛋白酶样蛋白酶抑制病毒核衣壳蛋白的 ISG 化,从而逃避宿主抗病毒免疫。

SARS-CoV-2 papain-like protease inhibits ISGylation of the viral nucleocapsid protein to evade host anti-viral immunity.

机构信息

Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.

Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

出版信息

J Virol. 2024 Sep 17;98(9):e0085524. doi: 10.1128/jvi.00855-24. Epub 2024 Aug 9.

Abstract

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.

摘要

严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)感染可引起轻度至重度呼吸道症状,包括急性呼吸窘迫。尽管人们为研究 SARS-CoV-2 的病毒学和病理学影响做出了巨大努力,但 SARS-CoV-2 感染的许多特征仍不清楚。干扰素诱导的泛素样蛋白 ISG15 与几种病毒蛋白发生共价结合,从而抑制它们的功能。有报道称,SARS-CoV-2 利用其木瓜蛋白酶样蛋白酶(PLpro)来阻止 ISG15 的结合,即 ISG 化。然而,ISG 化在 SARS-CoV-2 感染中的作用仍不清楚。我们旨在阐明 ISG 化在 SARS-CoV-2 复制中的作用。我们观察到 SARS-CoV-2 核衣壳蛋白是培养细胞中 HERC5 E3 连接酶介导的 ISG 化的靶蛋白。定点突变显示,C 端间隔 B-N3(SB/N3)结构域内的残基 K374 对于核衣壳蛋白的 ISG 化是必需的,而 MERS-CoV(K372)和 SARS-CoV(K375)中的保守赖氨酸残基也是必需的。我们还观察到,核衣壳蛋白的 ISG 化导致核衣壳寡聚化的破坏,从而抑制病毒复制。ISG15 mRNA 的敲低增强了 SARS-CoV-2 在 SARS-CoV-2 报告复制子细胞中的复制,而外源性表达 ISG 化成分部分阻碍了 SARS-CoV-2 的复制。总之,这些结果表明,SARS-CoV-2 PLpro 通过逃避 ISG 化介导的核衣壳寡聚化破坏来抑制核衣壳蛋白的 ISG 化,从而促进病毒复制。

相似文献

1
SARS-CoV-2 papain-like protease inhibits ISGylation of the viral nucleocapsid protein to evade host anti-viral immunity.
J Virol. 2024 Sep 17;98(9):e0085524. doi: 10.1128/jvi.00855-24. Epub 2024 Aug 9.
2
ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis.
J Virol. 2024 Sep 17;98(9):e0086924. doi: 10.1128/jvi.00869-24. Epub 2024 Aug 28.
3
ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis.
bioRxiv. 2024 May 20:2024.05.15.594393. doi: 10.1101/2024.05.15.594393.
5
Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15).
Semin Cell Dev Biol. 2022 Dec;132:16-26. doi: 10.1016/j.semcdb.2022.06.005. Epub 2022 Jun 25.
6
Suppression of SARS-CoV-2 nucleocapsid protein dimerization by ISGylation and its counteraction by viral PLpro.
Front Microbiol. 2024 Oct 24;15:1490944. doi: 10.3389/fmicb.2024.1490944. eCollection 2024.
8
Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity.
Nature. 2020 Nov;587(7835):657-662. doi: 10.1038/s41586-020-2601-5. Epub 2020 Jul 29.
9
Spatial and temporal roles of SARS-CoV PL -A snapshot.
FASEB J. 2021 Jan;35(1):e21197. doi: 10.1096/fj.202002271.
10
ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity.
Nat Microbiol. 2021 Apr;6(4):467-478. doi: 10.1038/s41564-021-00884-1. Epub 2021 Mar 16.

引用本文的文献

1
The Role of SARS-CoV-2 Nucleocapsid Protein in Host Inflammation.
Viruses. 2025 Jul 27;17(8):1046. doi: 10.3390/v17081046.
2
Dynamic Interaction Between SARS-CoV-2 and Influenza A Virus Infection in Human Respiratory Tissues and Cells.
Microorganisms. 2025 Apr 25;13(5):988. doi: 10.3390/microorganisms13050988.
3
PLSCR1 suppresses SARS-CoV-2 infection by downregulating cell surface ACE2.
J Virol. 2025 Mar 18;99(3):e0208524. doi: 10.1128/jvi.02085-24. Epub 2025 Feb 13.
4
Suppression of SARS-CoV-2 nucleocapsid protein dimerization by ISGylation and its counteraction by viral PLpro.
Front Microbiol. 2024 Oct 24;15:1490944. doi: 10.3389/fmicb.2024.1490944. eCollection 2024.

本文引用的文献

1
Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand?
Biomedicines. 2022 Nov 4;10(11):2815. doi: 10.3390/biomedicines10112815.
3
Structural dynamics of SARS-CoV-2 nucleocapsid protein induced by RNA binding.
PLoS Comput Biol. 2022 May 12;18(5):e1010121. doi: 10.1371/journal.pcbi.1010121. eCollection 2022 May.
4
Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis.
Trends Mol Med. 2022 Jul;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007. Epub 2022 Apr 21.
5
SARS-CoV-2 pathogenesis.
Nat Rev Microbiol. 2022 May;20(5):270-284. doi: 10.1038/s41579-022-00713-0. Epub 2022 Mar 30.
6
Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening.
Antiviral Res. 2022 Mar;199:105268. doi: 10.1016/j.antiviral.2022.105268. Epub 2022 Mar 7.
8
Structural biology of SARS-CoV-2: open the door for novel therapies.
Signal Transduct Target Ther. 2022 Jan 27;7(1):26. doi: 10.1038/s41392-022-00884-5.
9
SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response.
iScience. 2022 Jan 21;25(1):103562. doi: 10.1016/j.isci.2021.103562. Epub 2021 Dec 4.
10
Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection.
Nat Immunol. 2021 Nov;22(11):1416-1427. doi: 10.1038/s41590-021-01035-8. Epub 2021 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验