Suppr超能文献

基于 Hermite 多项式的 HIV-1/HTLV-I 共感染模型的小波配置方法。

Wavelet Collocation Method for HIV-1/HTLV-I Co-Infection Model Using Hermite Polynomial.

机构信息

Department of Mathematics, National Institute of Technology, Jamshedpur, Jharkhand, 831014, India.

出版信息

Adv Biol (Weinh). 2024 Oct;8(10):e2300629. doi: 10.1002/adbi.202300629. Epub 2024 Aug 9.

Abstract

In this study, the dynamic behavior of fractional order co-infection model with human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) is analyzed using operational matrix of Hermite wavelet collocation method. Also, the uniqueness and existence of solutions are calculated based on the fixed point hypothesis. For the fractional order co-infection model, its positivity and boundedness are demonstrated. Furthermore, different types of Ulam-Hyres stability are also discussed. The numerical solution of the model are obtained by using the operational matrix of the Hermite wavelet approach. This scheme is used to solve the system of nonlinear equations that are very fruitful and easy to implement. Additionally, the stability analysis of the numerical scheme is explained. The mathematical model taken in this work incorporates the biological characteristics of both HIV-1 and HTLV-I. After that all the equilibrium points of the fractional order co-infection model are found and their existence conditions are explored with the help of the Caputo derivative. The global stability of all equilibrium points of this model are determined with the help of Lyapunov functions and the LaSalle invariance principle. Convergence analysis is also discussed. Hermite wavelet operational matrix methods are more accurate and convergent than other numerical methods. Lastly, variations in model dynamics are found when examining different fractional order values. These findings will be valuable to biologists in the treatment of HIV-1/HTLV-I.

摘要

在这项研究中,我们使用 Hermite 小波配置法的运算矩阵分析了带有人类免疫缺陷病毒 1(HIV-1)和人类 T 淋巴细胞病毒 I(HTLV-I)的分数阶共感染模型的动态行为。此外,还根据不动点假设计算了解的唯一性和存在性。对于分数阶共感染模型,证明了其正定性和有界性。此外,还讨论了不同类型的 Ulam-Hyres 稳定性。该模型的数值解通过 Hermite 小波运算矩阵的方法获得。该方案用于求解非常有成效且易于实现的非线性方程组。此外,还解释了数值方案的稳定性分析。本文采用的数学模型包含了 HIV-1 和 HTLV-I 的生物学特征。之后,借助 Caputo 导数找到了分数阶共感染模型的所有平衡点,并探讨了它们的存在条件。借助 Lyapunov 函数和 LaSalle 不变性原理确定了该模型所有平衡点的全局稳定性。还讨论了收敛分析。与其他数值方法相比,Hermite 小波运算矩阵方法更准确且具有收敛性。最后,通过考察不同分数阶值,发现了模型动力学的变化。这些发现对于 HIV-1/HTLV-I 的治疗具有重要的生物学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验