Department of Food Biotechnology, Medical University of Białystok, 15-089 Białystok, Poland.
Nutrients. 2024 Aug 2;16(15):2537. doi: 10.3390/nu16152537.
Malnutrition is a significant concern affecting the elderly, necessitating a complex assessment. This study aims to deepen the understanding of factors associated with the assessment of malnutrition in the elderly by comparing single- and multi-parameter approaches. In this cross-sectional study, 154 individuals underwent a comprehensive geriatric assessment (CGA). Malnutrition risk was determined using the mini nutritional assessment (MNA). Additional factors assessed included sarcopenia, polypharmacy, depression, appetite, handgrip strength, and gait speed. Phase angle (PA) and body composition were measured using bioelectrical impedance analysis (BIA). The MNA identified a malnutrition risk in 36.8% of individuals. The geriatric depression scale (GDS) and PA demonstrated moderate effectiveness in assessing malnutrition risk, with AUC values of 0.69 (95% CI: 0.60-0.78) and 0.62 (95% CI: 0.54-0.72), respectively. A logistic regression model incorporating handgrip strength, skeletal muscle mass, sarcopenia, osteoporosis, depression, specific antidepressant use, mobility, appetite, and smoking achieved superior performance in predicting malnutrition risk, with an AUC of 0.84 (95% CI: 0.77-0.91). In conclusion, this study demonstrates that integrating multiple parameters into a composite model provides a more accurate and comprehensive assessment of malnutrition risk in elderly adults.
营养不良是影响老年人的一个重要问题,需要进行复杂的评估。本研究旨在通过比较单参数和多参数方法,深入了解与老年人营养不良评估相关的因素。在这项横断面研究中,对 154 名个体进行了全面的老年评估(CGA)。使用迷你营养评估(MNA)确定营养不良风险。评估的其他因素包括肌少症、多重用药、抑郁、食欲、手握力和步态速度。相位角(PA)和身体成分使用生物电阻抗分析(BIA)进行测量。MNA 确定了 36.8%的个体存在营养不良风险。老年抑郁量表(GDS)和 PA 评估营养不良风险的效果中等,AUC 值分别为 0.69(95%CI:0.60-0.78)和 0.62(95%CI:0.54-0.72)。包含握力、骨骼肌量、肌少症、骨质疏松症、抑郁、特定抗抑郁药使用、活动能力、食欲和吸烟的逻辑回归模型在预测营养不良风险方面表现更好,AUC 为 0.84(95%CI:0.77-0.91)。总之,本研究表明,将多个参数整合到综合模型中可以更准确、全面地评估老年人的营养不良风险。