Luo Haokun, Wei Yunxuan, Pyrialakos Georgios G, Khajavikhan Mercedeh, Christodoulides Demetrios N
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
Nat Commun. 2024 Aug 11;15(1):6882. doi: 10.1038/s41467-024-51083-5.
We propose a method for guiding charged particles such as electrons and protons, in vacuum, by employing the exotic properties of Lagrange points. This leap is made possible by the dynamics unfolding around these equilibrium points, which stably capture such particles, akin to the way Trojan asteroids are held in Jupiter's orbit. Unlike traditional methodologies that allow for either focusing or three-dimensional storage of charged particles, the proposed scheme can guide both non-relativistic and relativistic electrons and protons in small cross-sectional areas in an invariant fashion over long distances without any appreciable loss in energy - in a manner analogous to photon transport in optical fibers. Here, particle guiding is achieved by employing twisted electrostatic potentials that in turn induce stable Lagrange points in vacuum. In principle, guidance can be realized within the fundamental mode of the resulting waveguide, thereby presenting a prospect for manipulating these particles in the quantum domain. Our findings may be useful in a wide range of applications in both scientific and technological pursuits. These applications could encompass electron microscopies and lithographies, particle accelerators, quantum and classical communication/sensing systems, as well as methods for shuttling entangled qubits between nodes within a quantum network.
我们提出了一种在真空中利用拉格朗日点的奇异特性来引导诸如电子和质子等带电粒子的方法。围绕这些平衡点展开的动力学使得这一跨越成为可能,这些平衡点能稳定地捕获此类粒子,类似于特洛伊小行星被束缚在木星轨道上的方式。与传统的仅允许对带电粒子进行聚焦或三维存储的方法不同,所提出的方案能够以不变的方式在小横截面区域内长时间引导非相对论性和相对论性的电子及质子,且能量没有任何明显损失——类似于光子在光纤中的传输方式。在这里,粒子引导是通过采用扭曲的静电势来实现的,而扭曲的静电势又会在真空中诱导出稳定的拉格朗日点。原则上,引导可以在所得波导的基模内实现,从而为在量子领域操纵这些粒子提供了一种前景。我们的发现可能在科学和技术追求的广泛应用中有用。这些应用可能包括电子显微镜和光刻技术、粒子加速器、量子和经典通信/传感系统,以及在量子网络内的节点之间穿梭纠缠量子比特的方法。