The University of Iowa, Iowa City, IA, USA.
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
Redox Biol. 2024 Sep;75:103306. doi: 10.1016/j.redox.2024.103306. Epub 2024 Aug 8.
In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.
在骨科研究中,许多研究应用维生素 E 作为一种保护性抗氧化剂,或使用叔丁基过氧化物诱导软骨细胞氧化损伤。这些研究通常支持这样一种假设,即关节病理学引起氧化应激和脂质过氧化增加,而脂质抗氧化剂可能预防细胞存活或功能和关节健康受损;然而,在临床试验中,脂质抗氧化剂补充剂对骨关节炎无效,动物数据也存在争议。此外,循环维生素 E 水平增加与骨关节炎的发生率增加有关。这种从实验台到临床结果的脱节促使我们假设,软骨细胞氧化还原功能的氧化应激驱动范式不能捕捉脂质抗氧化剂和促氧化剂对关节软骨细胞的代谢和生理影响。我们使用离体和体内软骨模型来研究脂质抗氧化剂对健康的、原代的关节软骨细胞的影响,并应用免疫自旋捕获技术提供一个广泛的指标,以指示高水平的氧化应激,而不依赖于特定的活性氧。主要发现表明,脂质抗氧化剂具有促进线粒体的作用,而脂质促氧化剂则降低了线粒体的功能。在没有损伤的情况下,自由基的形成会被脂质抗氧化剂所增加;然而,在存在损伤的情况下,自由基的形成会减少。在无应激条件下,这种软骨细胞线粒体与氧化还原调节之间的关系在体内通过过表达谷胱甘肽过氧化物酶 4 得到了重现。在年龄为 18 个月或以上的小鼠中,过表达谷胱甘肽过氧化物酶 4 显著减少了促线粒体过氧化物酶体增殖物激活受体 γ 的存在,并破坏了线粒体与氧化还原环境之间的关系。这种复杂的相互作用表明,针对关节软骨的策略可能受益于采用更精细的关节软骨细胞氧化还原代谢范式。