Suppr超能文献

一种基于交通成像的桥梁动态响应分析与荷载识别方法。

A bridge dynamic response analysis and load recognition method using traffic imaging.

作者信息

Tang Liang, Liu Xiao-Bei, Liu Yi-Jun, Yu Kui, Shen Nan

机构信息

College of Civil Engineering, Chongqing Jiaotong University, Chongqing, China.

Transportation Bureau of Gao County, Sichuang, China.

出版信息

Sci Rep. 2024 Aug 13;14(1):18742. doi: 10.1038/s41598-024-68888-5.

Abstract

As the primary variable load of bridges, vehicle load is an important parameter for bridge health monitoring. However, traditional Weigh-in-Motion (WIM) systems and the commonly used method of placing sensors on the bridge are challenging to apply in load monitoring for many small and medium-sized bridges. Therefore, this paper proposes a bridge vehicle load identification method based on traffic surveillance video data. Leveraging the surveillance video data on the bridge, without introducing additional hardware devices, the displacement of target points is detected through sub-pixel level image detection algorithms, enabling non-contact measurement of bridge structural response through imaging. A spatiotemporal relationship model of structural displacement, vehicle load, and load distribution is established to solve for vehicle load. Finally, model bridge tests under various loading conditions and engineering practice experiments are conducted to validate the feasibility of the method. The results of the model bridge tests show that the structural displacement measured using traffic video measurement has a deviation of less than 10% compared to the measurements obtained using contact displacement sensors (LVDT), and it can accurately reflect the displacement characteristics of the structure. The results of the field tests demonstrate that the average estimation deviation for heavy vehicle loads ranging from 12 to 18 tons is approximately 18%, meeting the engineering requirements. The proposed method can provide load statistical information for the extensive health monitoring of small and medium-sized bridges and offer a new technical pathway for obtaining bridge load information.

摘要

车辆荷载作为桥梁的主要可变荷载,是桥梁健康监测的重要参数。然而,传统的动态称重(WIM)系统以及在桥梁上布置传感器的常用方法,对于许多中小桥梁的荷载监测而言,应用起来具有挑战性。因此,本文提出一种基于交通监控视频数据的桥梁车辆荷载识别方法。利用桥梁上的监控视频数据,无需引入额外的硬件设备,通过亚像素级图像检测算法检测目标点的位移,从而实现通过成像对桥梁结构响应进行非接触测量。建立结构位移、车辆荷载和荷载分布的时空关系模型来求解车辆荷载。最后,进行了各种加载条件下的模型桥试验和工程实践试验,以验证该方法的可行性。模型桥试验结果表明,采用交通视频测量得到的结构位移与使用接触式位移传感器(LVDT)测量得到的结果相比,偏差小于10%,且能准确反映结构的位移特性。现场试验结果表明,对于12至18吨的重型车辆荷载,平均估计偏差约为18%,满足工程要求。该方法可为中小桥梁的广泛健康监测提供荷载统计信息,并为获取桥梁荷载信息提供一条新的技术途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7544/11322662/bc6e82d45ad8/41598_2024_68888_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验