Suppr超能文献

免疫相关长链非编码 RNA 预后风险模型及其在乳腺癌患者生存预后评估中的应用。

Prognostic risk model under the immune-associated long chain non-coding ribonucleic acid and its application in survival prognosis assessment of patients with breast cancer.

机构信息

Shaoxing People's Hospital, Shaoxing City, 312000, China.

出版信息

Sci Rep. 2024 Aug 15;14(1):18928. doi: 10.1038/s41598-024-65614-z.

Abstract

This study aimed to develop a prognostic risk model based on immune-related long non-coding RNAs (lncRNAs). By analyzing the expression profiles of specific long non-coding RNAs, the objective was to construct a predictive model to accurately assess the survival prognosis of breast cancer (BC) patients. This effort seeks to provide personalized treatment strategies for patients and improve clinical outcomes. Based on the median risk value, 300 samples of triple-negative BC (TNBC) patients were rolled into a high-risk group (HR group, n = 140) and a low-risk group (LR group, n = 160). Multivariate Cox (MVC) analysis was performed by combining the patient risk score and clinical information to evaluate the prognostic value of the prognostic risk (PR) model. A total of 371 immune-related lncRNAs associated with the prognosis of TNBC were obtained from 300 TNBC samples. Nine associated with prognosis were obtained by univariate Cox (UVC) analysis, and 3 (AC090181.2, LINC01235, and LINC01943) were selected by MVC analysis for the construction of TNBC PR model. Survival analysis showed a great difference in TNBC patients in different groups (P < 0.001). The receiver operator characteristic (ROC) curve showed the model possessed a good area under ROC curve (AUC), which was 0.928. The patient RS jointing with clinical information as well as the MVC analysis revealed that RS was an independent risk factor (IRF) for prognosis of TNBC (P < 0.05, HR = 1.033286). Therefore, the lncRNAs associated with TNBC immunity can be screened by bioinformatics analysis, and the established PR model of TNBC could better predict the prognosis of patients with TNBC, exhibiting a high application value in clinic.

摘要

本研究旨在建立基于免疫相关长链非编码 RNA(lncRNA)的预后风险模型。通过分析特定长链非编码 RNA 的表达谱,构建预测模型以准确评估乳腺癌(BC)患者的生存预后。这项研究旨在为患者提供个体化的治疗策略,并改善临床结局。基于中位数风险值,将 300 例三阴性 BC(TNBC)患者分为高风险组(HR 组,n=140)和低风险组(LR 组,n=160)。通过将患者风险评分和临床信息相结合,进行多变量 Cox(MVC)分析,评估预后风险(PR)模型的预后价值。从 300 例 TNBC 样本中获得了 371 个与 TNBC 预后相关的免疫相关 lncRNA。通过单变量 Cox(UVC)分析获得了 9 个与预后相关的 lncRNA,通过 MVC 分析选择了 3 个(AC090181.2、LINC01235 和 LINC01943)用于构建 TNBC PR 模型。生存分析显示不同组别的 TNBC 患者之间存在显著差异(P<0.001)。受试者工作特征(ROC)曲线显示该模型具有良好的 ROC 曲线下面积(AUC),为 0.928。患者 RS 与临床信息相结合以及 MVC 分析表明,RS 是 TNBC 预后的独立风险因素(IRF)(P<0.05,HR=1.033286)。因此,可以通过生物信息学分析筛选与 TNBC 免疫相关的 lncRNA,并建立 TNBC 的 PR 模型,更好地预测 TNBC 患者的预后,在临床上具有较高的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f785/11327333/6a3502897c01/41598_2024_65614_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验