Che Qian, Li Chenyu, Chen Zhihui, Yang Shuai, Zhang Weifeng, Yu Gui
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409926. doi: 10.1002/anie.202409926. Epub 2024 Oct 16.
Imine-linked covalent organic frameworks (COFs) are garnering substantial interest in resistive random-access memory, attributed to their superior crystallinity, excellent chemical and thermal stability, and modifiable molecular structures. However, the development of high-performance COF-based memristors impeded by challenges such as low conjugation degree of imine bonds and poor electron delocalization ability. Herein, we report a protonation strategy to modify the imine bonds of donor-acceptor (D-A) type COFs. This modification significantly enhances the electron delocalization capability of imine bonds, lowers the energy barriers for electron injection from electrodes, and stabilizes the conductive charge transfer state, thus markedly improving device performance. The protonated COF-BTT-BPy and COF-BTT-TAPT thin films-based memristors show remarkable device performance with a high ON/OFF current ratio of 10, a low driving voltage, and outstanding endurance exceeding 600 and 1300 cycles, respectively, which is nearly twice the durability of analogous non-protonated COFs-based memristors. Notably, the protonated COF-BTT-TAPT-based memristor exhibit the highest number of cycles reported at present. This work not only unprecedentedly enhances the performance of COF-based memristors, but also provides a universal and promising approach for the molecular design and potential application of D-A type imine-linked COFs.
亚胺连接的共价有机框架(COFs)因其优异的结晶性、出色的化学和热稳定性以及可修饰的分子结构,在电阻式随机存取存储器中引起了广泛关注。然而,高性能基于COF的忆阻器的发展受到诸如亚胺键共轭度低和电子离域能力差等挑战的阻碍。在此,我们报道了一种质子化策略来修饰供体-受体(D-A)型COFs的亚胺键。这种修饰显著增强了亚胺键的电子离域能力,降低了从电极注入电子的能量势垒,并稳定了导电电荷转移状态,从而显著提高了器件性能。基于质子化的COF-BTT-BPy和COF-BTT-TAPT薄膜的忆阻器表现出卓越的器件性能,具有10的高开/关电流比、低驱动电压以及分别超过600和1300次循环的出色耐久性,这几乎是类似的非质子化基于COF的忆阻器耐久性的两倍。值得注意的是,基于质子化的COF-BTT-TAPT的忆阻器展现出目前报道的最高循环次数。这项工作不仅前所未有的提高了基于COF的忆阻器的性能,还为D-A型亚胺连接的COFs的分子设计和潜在应用提供了一种通用且有前景的方法。