BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia.
Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
Comput Methods Programs Biomed. 2024 Oct;255:108362. doi: 10.1016/j.cmpb.2024.108362. Epub 2024 Aug 3.
Techniques for imaging the mechanical properties of cells are needed to study how cell mechanics influence cell function and disease progression. Mechano-microscopy (a high-resolution variant of compression optical coherence elastography) generates elasticity images of a sample undergoing compression from the phase difference between optical coherence microscopy (OCM) B-scans. However, the existing mechano-microscopy signal processing chain (referred to as the algebraic method) assumes the sample stress is uniaxial and axially uniform, such that violation of these assumptions reduces the accuracy and precision of elasticity images. Furthermore, it does not account for prior information regarding the sample geometry or mechanical property distribution. In this study, we investigate the feasibility of training a conditional generative adversarial network (cGAN) to generate elasticity images from phase difference images of samples containing a cell spheroid embedded in a hydrogel.
To construct the cGAN training and simulated test sets, we generated 30,000 artificial elasticity images using a parametric model and computed the corresponding phase difference images using finite element analysis to simulate compression applied to the artificial samples. We also imaged real MCF7 breast tumor spheroids embedded in hydrogel using mechano-microscopy to construct the experimental test set and evaluated the cGAN using the algebraic elasticity images and co-registered OCM and confocal fluorescence microscopy (CFM) images.
Comparison with the simulated test set ground truth elasticity images shows the cGAN produces a lower root mean square error (median: 3.47 kPa, 95 % confidence interval (CI) [3.41, 3.52]) than the algebraic method (median: 4.91 kPa, 95 % CI [4.85, 4.97]). For the experimental test set, the cGAN elasticity images contain features resembling stiff nuclei at locations corresponding to nuclei seen in the algebraic elasticity, OCM, and CFM images. Furthermore, the cGAN elasticity images are higher resolution and more robust to noise than the algebraic elasticity images.
The cGAN elasticity images exhibit better accuracy, spatial resolution, sensitivity, and robustness to noise than the algebraic elasticity images for both simulated and real experimental data.
需要用于成像细胞机械性能的技术来研究细胞力学如何影响细胞功能和疾病进展。机械显微镜(压缩光相干弹性成像的高分辨率变体)通过光学相干显微镜(OCM)B 扫描之间的相位差生成在压缩下的样本的弹性图像。然而,现有的机械显微镜信号处理链(称为代数方法)假设样本的应力是单轴且轴向均匀的,因此违反这些假设会降低弹性图像的准确性和精度。此外,它不考虑有关样本几何形状或机械性能分布的先验信息。在这项研究中,我们研究了从包含嵌入水凝胶中的细胞球体的样本的相位差图像训练条件生成对抗网络(cGAN)以生成弹性图像的可行性。
为了构建 cGAN 训练和模拟测试集,我们使用参数模型生成了 30000 张人工弹性图像,并使用有限元分析计算了相应的相位差图像,以模拟对人工样本施加的压缩。我们还使用机械显微镜对嵌入水凝胶中的 MCF7 乳腺癌球体进行了成像,以构建实验测试集,并使用代数弹性图像和共配准的 OCM 和共聚焦荧光显微镜(CFM)图像来评估 cGAN。
与模拟测试集的真实弹性图像相比,cGAN 产生的均方根误差较低(中位数:3.47 kPa,95%置信区间(CI)[3.41,3.52]),而代数方法(中位数:4.91 kPa,95%CI [4.85,4.97])。对于实验测试集,cGAN 弹性图像包含与在代数弹性、OCM 和 CFM 图像中看到的核对应的位置处的硬核相似的特征。此外,与代数弹性图像相比,cGAN 弹性图像的分辨率更高,对噪声的鲁棒性更强。
与模拟和真实实验数据的代数弹性图像相比,cGAN 弹性图像具有更高的准确性、空间分辨率、灵敏度和对噪声的鲁棒性。