Suppr超能文献

板层内胶原蛋白和透明质酸纳米结构在腰椎纤维环生物力学中的作用:基于分子力学-有限元的多尺度分析见解

Role of intra-lamellar collagen and hyaluronan nanostructures in annulus fibrosus on lumbar spine biomechanics: insights from molecular mechanics-finite element-based multiscale analyses.

作者信息

Bhattacharya Shambo, Dubey Devendra K

机构信息

Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

出版信息

Med Biol Eng Comput. 2025 Jan;63(1):139-157. doi: 10.1007/s11517-024-03184-y. Epub 2024 Aug 26.

Abstract

Annulus fibrosus' (AF) ability to transmit multi-directional spinal motion is contributed by a combination of chemical interactions among biomolecular constituents-collagen type I (COL-I), collagen type II (COL-II), and proteoglycans (aggrecan and hyaluronan)-and mechanical interactions at multiple length scales. However, the mechanistic role of such interactions on spinal motion is unclear. The present work employs a molecular mechanics-finite element (FE) multiscale approach to investigate the mechanistic role of molecular-scale collagen and hyaluronan nanostructures in AF, on spinal motion. For this, an FE model of the lumbar segment is developed wherein a multiscale model of AF collagen fiber, developed from COL-I, COL-II, and hyaluronan using the molecular dynamics-cohesive finite element multiscale method, is incorporated. Analyses show AF collagen fibers primarily contribute to axial rotation (AR) motion, owing to angle-ply orientation. Maximum fiber strain values of 2.45% in AR, observed at the outer annulus, are 25% lower than the reported values. This indicates native collagen fibers are softer, attributed to the softer non-fibrillar matrix and higher interfibrillar sliding. Additionally, elastic zone stiffness of 8.61 Nm/° is observed to be 20% higher than the reported range, suggesting native AF lamellae exhibit lower stiffness, resulting from inter-collagen fiber bundle sliding. The presented study has further implications towards the hierarchy-driven designing of AF-substitute materials.

摘要

纤维环(AF)传递多方向脊柱运动的能力是由生物分子成分——I型胶原蛋白(COL-I)、II型胶原蛋白(COL-II)和蛋白聚糖(聚集蛋白聚糖和透明质酸)之间的化学相互作用以及多个长度尺度上的机械相互作用共同作用的结果。然而,这种相互作用对脊柱运动的作用机制尚不清楚。目前的工作采用分子力学-有限元(FE)多尺度方法来研究AF中分子尺度的胶原蛋白和透明质酸纳米结构对脊柱运动的作用机制。为此,建立了一个腰椎节段的有限元模型,其中纳入了一个使用分子动力学-内聚有限元多尺度方法从COL-I、COL-II和透明质酸开发的AF胶原纤维多尺度模型。分析表明,由于角铺层取向,AF胶原纤维主要对轴向旋转(AR)运动有贡献。在外环观察到的AR中最大纤维应变值为2.45%,比报道的值低25%。这表明天然胶原纤维更柔软,这归因于较软的非纤维状基质和较高的纤维间滑动。此外,观察到弹性区刚度为8.61 Nm/°,比报道的范围高20%,这表明天然AF板层表现出较低的刚度,这是由胶原纤维束间滑动导致的。本研究对AF替代材料的层次驱动设计具有进一步的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验