Suppr超能文献

基于萤火虫算法的长短期记忆模型用于大数据分析下的古筝曲调切换

Firefly algorithm-based LSTM model for Guzheng tunes switching with big data analysis.

作者信息

Han Mingjin, Soradi-Zeid Samaneh, Anwlnkom Tomley, Yang Yuanyuan

机构信息

Xinxiang University, Xinxiang, 453003, China.

University of Sistan and Baluchestan, Zahedan, 9816745845, Iran.

出版信息

Heliyon. 2024 May 29;10(12):e32092. doi: 10.1016/j.heliyon.2024.e32092. eCollection 2024 Jun 30.

Abstract

Guzheng tune progression involves intricately harmonizing melodic motif transitions. Effectively navigating this vast creative possibility space to expose musically consistent elaborations presents challenges. We develop a specialized large long short-term memory (LSTM) model for generating musically consistent Guzheng tune transitions. First, we propose novel firefly algorithm (FA) enhancements, e.g., adaptive diversity preservation and adaptive swim parameters, to boost exploration effectiveness for navigating the vast creative combinatorics when generating Guzheng tune transitions. Then, we develop a specialized stacked LSTM architecture incorporating residual connections and conditioned embedding vectors that can leverage long-range temporal dependencies in Guzheng music patterns, including unsupervised learning of concise Guzheng-specific melody embedding vectors via a variational autoencoder, encapsulating unique harmonic signatures from performance descriptors to provide style guidance. Finally, we use LSTM networks to develop adversarial generative large models that enable realistic synthesis and evaluation of Guzheng tunes switching. We gather an extensive 10+ hour corpus of solo Guzheng recordings spanning 230 musical pieces, 130 distinguished performing artists, and 600+ audio tracks. Simultaneously, we conduct thorough Guzheng data analysis. Comparative assessments against strong baselines over systematic musical metrics and professional listeners validate significant generation fidelity improvements. Our model achieves a 63 % reduction in reconstruction error compared to the standard FA optimization after 1000 iterations. It also outperforms baselines in capturing characteristic motifs, maintaining modality coherence with under 2 % dissonant pitch errors, and retaining desired rhythmic cadences. User studies further confirm the superior naturalness, novelty, and stylistic faithfulness of the generated tune transitions, with ratings close to real data.

摘要

古筝曲调的演进涉及到旋律主题转换的复杂协调。有效地在这个广阔的创作可能性空间中导航,以展现音乐上连贯的润色,这带来了挑战。我们开发了一种专门的大型长短期记忆(LSTM)模型,用于生成音乐上连贯的古筝曲调转换。首先,我们提出了新颖的萤火虫算法(FA)增强方法,例如自适应多样性保持和自适应游动参数,以提高在生成古筝曲调转换时探索广阔创作组合的有效性。然后,我们开发了一种专门的堆叠LSTM架构,该架构结合了残差连接和条件嵌入向量,可以利用古筝音乐模式中的长程时间依赖性,包括通过变分自编码器对简洁的古筝特定旋律嵌入向量进行无监督学习,从性能描述符中封装独特的和声特征以提供风格指导。最后,我们使用LSTM网络开发对抗生成大型模型,以实现对古筝曲调切换的逼真合成和评估。我们收集了一个超过10小时的独奏古筝录音语料库,涵盖230首音乐作品、130位杰出的表演艺术家和600多个音频轨道。同时,我们对古筝数据进行了深入分析。通过系统的音乐指标和专业听众对强大基线进行的比较评估验证了生成保真度的显著提高。与标准FA优化相比,我们的模型在1〇〇〇次迭代后重建误差降低了63%。它在捕捉特征主题、保持模态连贯性(不和谐音高误差低于2%)以及保留所需的节奏韵律方面也优于基线。用户研究进一步证实了生成的曲调转换具有卓越的自然性、新颖性和风格忠实性,评分接近真实数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93cc/11341240/a9945e61d927/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验