Suppr超能文献

同轴对准可控(COAST)导丝机器人的设计、建模与控制

Design, Modeling, and Control of a Coaxially Aligned Steerable (COAST) Guidewire Robot.

作者信息

Jeong Seokhwan, Chitalia Yash, Desai Jaydev P

机构信息

Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

IEEE Robot Autom Lett. 2020 Jul;5(3):4947-4954. doi: 10.1109/lra.2020.3004782. Epub 2020 Jun 25.

Abstract

Manual navigation of a guidewire is the first step in endovascular interventions. However, this procedure is time consuming with uncertain results due to tortuous vascular anatomy. This paper introduces the design of a novel COaxially Aligned STeerable (COAST) guidewire robot that is 0.40 mm in diameter demonstrating variable curvature and independently controlled bending length of the distal end. The COAST design involves three coaxially aligned tubes with a single tendon running centrally through the length of robot. The outer tubes are made from micromachined nitinol allowing for tendon-driven bending of the robot at various segments of the robot, thereby enabling variable bending curvatures, while an inner stainless steel tube controls the bending length of the robot. By varying relative positions of the tubes and the tendon by insertion and retraction in the entire assembly, various joint lengths and curvatures can be achieved, which enables a follow-the-leader motion. We model the kinematics, statics, as well as the coupling within tubes of the COAST robot and develop a simple controller to control the distal tip of the robot. Finally, we experimentally demonstrate the ability of COAST guidewire to accurately navigate through phantom anatomical bifurcations and tortuous anatomy.

摘要

导丝的手动操作是血管内介入治疗的第一步。然而,由于血管解剖结构复杂,该操作耗时且结果不确定。本文介绍了一种新型同轴对齐可转向(COAST)导丝机器人的设计,其直径为0.40毫米,具有可变曲率且远端弯曲长度可独立控制。COAST设计包括三根同轴对齐的管子,一根肌腱从机器人的中心贯穿其全长。外管由微加工的镍钛诺制成,允许机器人在不同部位通过肌腱驱动进行弯曲,从而实现可变的弯曲曲率,而内部不锈钢管控制机器人的弯曲长度。通过在整个组件中插入和缩回改变管子和肌腱的相对位置,可以实现各种关节长度和曲率,从而实现跟随引导运动。我们对COAST机器人的运动学、静力学以及管内耦合进行建模,并开发了一个简单的控制器来控制机器人的远端。最后,我们通过实验证明了COAST导丝能够准确地穿过模拟解剖分叉和复杂解剖结构。

相似文献

1
Design, Modeling, and Control of a Coaxially Aligned Steerable (COAST) Guidewire Robot.
IEEE Robot Autom Lett. 2020 Jul;5(3):4947-4954. doi: 10.1109/lra.2020.3004782. Epub 2020 Jun 25.
2
Model-based Design of the COAST Guidewire Robot for Large Deflection.
IEEE Robot Autom Lett. 2023 Sep;8(9):5345-5352. doi: 10.1109/lra.2023.3286125. Epub 2023 Jun 14.
3
Kinematic Modeling and Jacobian-based Control of the COAST Guidewire Robot.
IEEE Trans Med Robot Bionics. 2022 Nov;4(4):967-975. doi: 10.1109/tmrb.2022.3216026. Epub 2022 Oct 20.
4
Simultaneous Shape and Tip Force Sensing for the COAST Guidewire Robot.
IEEE Robot Autom Lett. 2023 Jun;8(6):3725-3731. doi: 10.1109/lra.2023.3267008. Epub 2023 Apr 13.
5
Real-time Pose Tracking for a Continuum Guidewire Robot under Fluoroscopic Imaging.
IEEE Trans Med Robot Bionics. 2023 May;5(2):230-241. doi: 10.1109/tmrb.2023.3260273. Epub 2023 Mar 22.
6
Fluoroscopic Image-Based 3-D Environment Reconstruction and Automated Path Planning for a Robotically Steerable Guidewire.
IEEE Robot Autom Lett. 2022 Oct;7(4):11918-11925. doi: 10.1109/lra.2022.3207568. Epub 2022 Sep 19.
7
A Telescopic Tendon-Driven Needle Robot for Minimally Invasive Neurosurgery.
Rep U S. 2023 Oct;2023:10301-10307. doi: 10.1109/iros55552.2023.10341660. Epub 2023 Dec 13.
8
Towards FBG-Based Shape Sensing for Micro-scale and Meso-Scale Continuum Robots with Large Deflection.
IEEE Robot Autom Lett. 2020 Apr;5(2):1712-1719. doi: 10.1109/lra.2020.2969934. Epub 2020 Jan 28.
9
Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment.
IEEE Trans Robot. 2015 Apr;31(2):246-258. doi: 10.1109/TRO.2015.2394331. Epub 2015 Feb 10.
10
A Soft, Steerable Continuum Robot That Grows via Tip Extension.
Soft Robot. 2019 Feb;6(1):95-108. doi: 10.1089/soro.2018.0034. Epub 2018 Oct 24.

引用本文的文献

1
Model-based Parameter Selection for a Steerable Continuum Robot - Applications to Bronchoalveolar Lavage (BAL).
IEEE Robot Autom Lett. 2025 Jan;10(1):414-420. doi: 10.1109/lra.2024.3497652. Epub 2024 Nov 13.
2
Towards a Tendon-Driven Robotically Steerable Guidewire with a Retractable Distal Balloon.
IEEE Robot Autom Lett. 2025 Sep;10(9):9010-9015. doi: 10.1109/lra.2025.3590303. Epub 2025 Jul 17.
3
Design and Modeling of a Compact Spooling Mechanism for the COAST Guidewire Robot.
IEEE Robot Autom Lett. 2024 Oct;9(10):8874-8880. doi: 10.1109/lra.2024.3447466. Epub 2024 Aug 21.
4
A variable stiffness robotically steerable guidewire for endovascular interventions.
Npj Robot. 2025;3(1):21. doi: 10.1038/s44182-025-00029-0. Epub 2025 Jul 10.
5
Self-Steering Catheters for Neuroendovascular Interventions.
IEEE Trans Med Robot Bionics. 2024 Nov;6(4):1726-1737. doi: 10.1109/TMRB.2024.3464123. Epub 2024 Sep 19.
6
Enhancing Grasping Function with a Thermoresponsive Ionogel Adhesive Glove for Patients with Rheumatic Diseases.
Adv Sci (Weinh). 2025 Jul;12(26):e2414761. doi: 10.1002/advs.202414761. Epub 2025 Mar 26.
7
Development of a single port dual arm robotically steerable endoscope for neurosurgical applications.
Npj Robot. 2025;3(1):1. doi: 10.1038/s44182-024-00017-w. Epub 2025 Jan 8.
10
Image-based Force Localization and Estimation of a Micro-scale Continuum Guidewire Robot.
IEEE Trans Med Robot Bionics. 2024 Feb;6(1):153-162. doi: 10.1109/tmrb.2024.3349598. Epub 2024 Jan 4.

本文引用的文献

1
Ferromagnetic soft continuum robots.
Sci Robot. 2019 Aug 28;4(33). doi: 10.1126/scirobotics.aax7329.
2
Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association.
Circulation. 2018 Mar 20;137(12):e67-e492. doi: 10.1161/CIR.0000000000000558. Epub 2018 Jan 31.
3
The Steerable Microcatheter: A New Device for Selective Catheterisation.
Cardiovasc Intervent Radiol. 2017 Jun;40(6):947-952. doi: 10.1007/s00270-017-1579-3. Epub 2017 Jan 30.
4
Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease.
Comput Methods Biomech Biomed Engin. 2016 Dec;19(16):1760-1771. doi: 10.1080/10255842.2016.1184655. Epub 2016 May 11.
5
A Wrist for Needle-Sized Surgical Robots.
IEEE Int Conf Robot Autom. 2015 May;2015:1776-1781. doi: 10.1109/ICRA.2015.7139428.
6
Differences in aortic arch radius of curvature, neck size, and taper in patients with traumatic and aortic disease.
J Surg Res. 2013 Sep;184(1):613-8. doi: 10.1016/j.jss.2013.05.098. Epub 2013 Jun 21.
7
A complication of subclavian venous catheterization: extravascular kinking, knotting, and entrapment of the guidewire -A case report-.
Korean J Anesthesiol. 2010 Mar;58(3):296-8. doi: 10.4097/kjae.2010.58.3.296. Epub 2010 Mar 29.
9
Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions.
J Am Coll Cardiol. 2006 Feb 7;47(3):515-21. doi: 10.1016/j.jacc.2005.11.017. Epub 2006 Jan 18.
10
Severe skin reactions from interventional fluoroscopy: case report and review of the literature.
Radiology. 1999 Dec;213(3):773-6. doi: 10.1148/radiology.213.3.r99dc16773.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验