Suppr超能文献

精准透析:利用大数据和人工智能

Precision Dialysis: Leveraging Big Data and Artificial Intelligence.

作者信息

Nobakht Ehsan, Raru Wubit, Dadgar Sherry, El Shamy Osama

机构信息

Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University, Washington, DC.

出版信息

Kidney Med. 2024 Jul 14;6(9):100868. doi: 10.1016/j.xkme.2024.100868. eCollection 2024 Sep.

Abstract

The long-term mortality of patients with kidney failure remains unacceptably high. There are a multitude of reasons for the unfavorable status quo of dialysis care, such as the inadequate and suboptimal pattern of uremic toxin removal resulting in a metabolic and hemodynamic "roller coaster" induced by thrice-weekly in-center hemodialysis. Innovation in dialysis delivery systems is needed to build an adaptive and self-improving process to change the status quo of dialysis care with the aim of transforming it from being reactive to being proactive. The introduction of more physiologic and smart dialysis systems using artificial intelligence (AI) incorporating real-time data into the process of dialysis delivery is a realistic target. This would enable machine learning from both individual and collective patient treatment data. This has the potential to shift the paradigm from the practice of population-driven, evidence-based data to precision medicine. In this review, we describe the different components of an AI system, discuss the studied applications of AI in the field of dialysis, and outline parameters that can be used for future smart, adaptive dialysis delivery systems. The desired output is precision dialysis; a self-improving process that has the ability to prognosticate and develop instant and individualized predictive models.

摘要

肾衰竭患者的长期死亡率仍然高得令人难以接受。透析护理的现状不佳有多种原因,例如尿毒症毒素清除模式不足且欠佳,导致每周三次的中心血液透析引发代谢和血流动力学的“过山车”现象。需要在透析输送系统方面进行创新,以建立一个适应性和自我完善的过程,改变透析护理的现状,使其从被动应对转变为主动预防。引入更多使用人工智能(AI)的生理智能透析系统,将实时数据纳入透析输送过程,是一个现实的目标。这将使机器学习能够利用个体和集体患者的治疗数据。这有可能将范式从基于人群驱动、循证数据的实践转变为精准医学。在这篇综述中,我们描述了人工智能系统的不同组成部分,讨论了人工智能在透析领域的研究应用,并概述了可用于未来智能、适应性透析输送系统的参数。理想的输出是精准透析,这是一个具有预测能力并能即时开发个性化预测模型的自我完善过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb5/11342780/b6b06acf3644/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验