Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany.
Charité-Universitätsmedizin Berlin, Berlin, Germany.
Hum Brain Mapp. 2024 Aug 15;45(12):e26813. doi: 10.1002/hbm.26813.
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
神经影像学采集协议和去噪技术的进步,以及磁场强度的增加,极大地提高了功能磁共振成像 (fMRI) 的时间信号噪声比 (tSNR)。这使得具有亚毫米体素大小和超高时间分辨率的空间分辨率成为可能,并为在个体大脑中进行精确 fMRI 开辟了道路。然而,超高的空间和时间分辨率是有代价的:它降低了 tSNR,因此降低了对血氧水平依赖 (BOLD) 效应和大脑中其他功能对比的敏感性。在这里,我们研究了各种平滑滤波器在保持单个体分析中激活簇的空间准确性的同时提高 BOLD 敏感性的潜力。我们引入了具有优化指标的自适应加权平滑 (AWSOM),它很好地解决了这一挑战。AWSOM 采用了一种局部推断方法,这种方法与使用大高斯核平滑后的数据的聚类校正推断一样敏感,但它在多个 tSNR 水平上保留了空间细节。这对于检查全脑 fMRI 数据至关重要,因为 tSNR 会因大脑区域与接收线圈的距离、设置类型、采集协议、预处理和分辨率等因素而在整个大脑中发生变化。我们发现,单个受试者中的聚类校正会导致假阳性率和假阳性率膨胀。AWSOM 有效地抑制了假阳性,同时即使对于小的激活体素簇也保持了敏感性。此外,它还保持了信号的完整性,即显著体素的相对激活强度,使其成为广泛的 fMRI 应用的宝贵资产。在这里,我们展示了这些特性,并将 AWSOM 免费提供给研究社区下载。