Suppr超能文献

基于液态聚异戊二烯/碳纳米管的打印式电子皮肤的无滞后温度传感

Hysteresis-Free Temperature Sensing with Printable Electronic Skins Made of Liquid Polyisoprene/CNTs.

机构信息

Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):48176-48186. doi: 10.1021/acsami.4c06263. Epub 2024 Aug 26.

Abstract

Developing an electronic skin (e-skin) is becoming popular due to its capability to mimic human skin's ability to detect various stimuli. Mostly, such skins are tactile-based sensors. However, the exploration of nontactile-based sensing capability in the e-skin is still in a nascent stage. Herein, we report an approach toward developing electrical hysteresis- and cross-interference-free nontactile e-skin using liquid polyisoprene with an ultralow concentration of multiwalled carbon nanotubes (ϕ = 0.006 volume fraction) by leveraging the stencil printing technique. The impact of cross-linking the samples was studied. Uncross-linked samples demonstrated higher electrical conductivity than the cross-linked samples. A coarse-grained phenomenological model with molecular dynamics simulation was utilized to investigate filler network formation and percolation that dictate the conductivity of uncross-linked and cross-linked samples. Simulation studies supported the fidelity of the experimental findings. The uncross-linked e-skin demonstrated a higher temperature sensitivity (-1.103%/°C) than the cross-linked e-skin (-0.320%/°C) in the thermal conduction mode. Despite the superior sensitivity of the uncross-linked e-skin, the cross-linked systems demonstrated superior cyclic stability (35 thermal cycles), ensuring reliable sensor readings over extended usage. Judicious choice of encapsulant warranted the cross-linked e-skin sensor to nullify the impact of moisture on signal output, thereby providing cross-interference-free results. The optimized e-skin sample retained a similar thermal sensitivity even when used in the nontactile mode. From the application purview, the utility of the developed sensor was tested successfully for nontactile sensing of human body temperature. Additionally, the sensor was utilized to determine the respiratory profile by integrating the developed sensor into a wearable mask. This study advances nontactile e-skin-based sensing technology and opens new avenues for creating wearable and IoT devices for healthcare and human-machine interactions.

摘要

由于能够模拟人类皮肤检测各种刺激的能力,电子皮肤(e-skin)的开发变得越来越流行。大多数此类皮肤都是基于触觉的传感器。然而,e-skin 中非触觉传感能力的探索仍处于起步阶段。在此,我们报告了一种使用具有超低浓度多壁碳纳米管(ϕ=0.006 体积分数)的液体聚异戊二烯通过模板印刷技术开发电滞后和无交叉干扰的非触觉 e-skin 的方法。研究了交联对样品的影响。未交联的样品表现出比交联的样品更高的电导率。利用粗粒化唯象模型和分子动力学模拟研究了填充剂网络的形成和渗流,这些因素决定了未交联和交联样品的电导率。模拟研究支持了实验结果的准确性。在热传导模式下,未交联的 e-skin 比交联的 e-skin 具有更高的温度敏感性(-1.103%/°C)比交联的 e-skin(-0.320%/°C)。尽管未交联的 e-skin 具有更高的灵敏度,但交联系统在 35 次热循环中表现出更好的循环稳定性,确保了在延长使用过程中可靠的传感器读数。明智地选择封装剂保证了交联的 e-skin 传感器对信号输出的水分影响为零,从而提供无交叉干扰的结果。即使在非触觉模式下使用,优化后的 e-skin 样品也保留了类似的热灵敏度。从应用角度来看,成功地测试了所开发传感器用于非触觉人体温度感应的实用性。此外,通过将开发的传感器集成到可穿戴面罩中,该传感器用于确定呼吸轮廓。这项研究推进了基于非触觉 e-skin 的传感技术,并为创建用于医疗保健和人机交互的可穿戴和物联网设备开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验