Wu Xuanhao, Tian Xin, Zhang Wanglin, Peng Xiaoyan, Zhou Siyuan, Buenconsejo Pio John S, Li Yi, Xiao Song, Tao Jifang, Zhang Mingming, Yuan Hongye
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202410411. doi: 10.1002/anie.202410411. Epub 2024 Oct 22.
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni(HITP)/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni(HITP) on NUS-8 nanosheets, producing solution-processable Ni(HITP)/NUS-8 nanosheets with a film conductivity of 1.55×10 S ⋅ cm at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni(HITP)/NUS-8-based system can monitor finger bending. Gas sensors based on Ni(HITP)/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace HS at room temperature, attributed to the coupling between Ni(HITP) and NUS-8 and the redox reaction with HS. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
导电金属有机框架材料(c-MOFs)因其导电性和孔隙率,在高灵敏度传感系统方面具有广阔前景。然而,制备具有可控形态、厚度和择优取向的c-MOF薄膜仍然是一个艰巨但普遍存在的挑战。在此,我们提出一种创新的模板辅助策略,用于构建具有良好导电性、孔隙率和溶液可加工性的MOF-on-MOF(Ni(HITP)/NUS-8(HITP:2,3,6,7,10,11-六氨基三(对亚苯基)))体系。利用NUS-8的二维特性和溶液可加工性,我们实现了Ni(HITP)在NUS-8纳米片上的可控自组装,制备出室温下薄膜电导率为1.55×10 S ⋅ cm的溶液可加工Ni(HITP)/NUS-8纳米片。值得注意的是,优异的溶液可加工性有利于大面积薄膜的制备以及复杂图案的印刷,且图案具有良好的均匀性,基于Ni(HITP)/NUS-8的体系能够监测手指弯曲。基于Ni(HITP)/NUS-8的气体传感器在室温下对超痕量H₂S表现出高灵敏度(检测限~6 ppb)和选择性,这归因于Ni(HITP)与NUS-8之间的耦合以及与H₂S的氧化还原反应。这种方法不仅释放了按顺序堆叠不同MOF层以产生单一MOF无法实现的功能的潜力,还为MOF在具有显著传感性能的小型化器件中的可扩展集成提供了新途径。