Shi De-Li
Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
J Dev Biol. 2024 Aug 2;12(3):20. doi: 10.3390/jdb12030020.
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
胚胎轴的形成是动物发育过程中的关键步骤,它有助于在每个特定生物体中建立基本的身体结构。Wnt信号通路在这一基本过程中发挥着关键作用。依赖于β-连环蛋白的经典Wnt信号传导调节背腹轴、前后轴和左右轴的模式形成。不依赖于β-连环蛋白的非经典Wnt信号传导调节细胞骨架组织,以协调细胞极性变化和不对称细胞运动。现在有充分的文献记载,这些Wnt信号通路的成分在生物化学和功能上相互作用,以介导细胞间通讯,并在打破胚胎对称性时指导细胞极化。Wnt信号传导功能障碍会破坏胚胎轴的特化和正常的组织形态发生,Wnt通路基因的突变与人类出生缺陷有关。本综述通过关注脊椎动物模型,讨论了Wnt通路成分在胚胎轴形成中的调节作用。它突出了目前在解码沿三个主要身体轴建立不对称性的保守机制方面取得的进展。通过深入分析经典和非经典通路在调节细胞命运和细胞行为方面的作用,这项工作为有助于建立脊椎动物胚胎基本身体结构的复杂过程提供了见解。