Littleboy Chris, Subke Jens-Arne, Bunnefeld Nils, Jones Isabel L
Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.
Sci Data. 2024 Aug 27;11(1):927. doi: 10.1038/s41597-024-03732-z.
We present a seasonal classification system to improve the temporal framing of comparative scientific analysis. Research often uses yearly aggregates to understand inherently seasonal phenomena like harvests, monsoons, and droughts. This obscures important trends across time and differences through space by including redundant data. Our classification system allows for a more targeted approach. We split global land into four principal climate zones: desert, arctic and high montane, tropical, and temperate. A cluster analysis with zone-specific variables and weighting splits each month of the year into discrete seasons based on the monthly climate. We expect the data will be able to answer global comparative analysis questions like: are global winters less icy than before? Are wildfires more frequent now in the dry season? How severe are monsoon season flooding events? This is a natural extension of the historical concept of biomes, made possible by recent advances in climate data availability and artificial intelligence.
我们提出了一种季节性分类系统,以改进比较科学分析的时间框架。研究常常使用年度汇总数据来理解诸如收成、季风和干旱等本质上具有季节性的现象。通过纳入冗余数据,这掩盖了重要的长期趋势以及空间差异。我们的分类系统允许采用更具针对性的方法。我们将全球陆地划分为四个主要气候区:沙漠、北极和高山区、热带和温带。使用特定区域变量和权重进行的聚类分析,根据每月气候将一年中的每个月划分为离散的季节。我们预计这些数据将能够回答诸如以下全球比较分析问题:全球冬季是否比以前更不寒冷?旱季现在的野火是否更频繁?季风季节洪水事件有多严重?这是生物群落历史概念的自然延伸,气候数据可用性和人工智能的最新进展使其成为可能。