Tohgasaki Takeshi, Touyama Arisa, Kousai Shohei, Imai Kaita
FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan.
Cytoronix Inc., 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan.
Bioengineering (Basel). 2024 Jul 31;11(8):774. doi: 10.3390/bioengineering11080774.
In this study, we aimed to develop a novel method for non-invasively determining intracellular protein levels, which is essential for understanding cellular phenomena. This understanding hinges on insights into gene expression, cell morphology, dynamics, and intercellular interactions. Traditional cell analysis techniques, such as immunostaining, live imaging, next-generation sequencing, and single-cell analysis, despite rapid advancements, face challenges in comprehensively integrating gene and protein expression data with spatiotemporal information. Leveraging advances in machine learning for image analysis, we designed a new model to estimate cellular biomarker protein levels using a blend of phase-contrast and fluorescent immunostaining images of epidermal keratinocytes. By iterating this process across various proteins, our model can estimate multiple protein levels from a single phase-contrast image. Additionally, we developed a system for analyzing multiple protein expression levels alongside spatiotemporal data through live imaging and phase-contrast methods. Our study offers valuable tools for cell-based research and presents a new avenue for addressing molecular biological challenges.
在本研究中,我们旨在开发一种用于非侵入性测定细胞内蛋白质水平的新方法,这对于理解细胞现象至关重要。这种理解取决于对基因表达、细胞形态、动力学和细胞间相互作用的深入了解。传统的细胞分析技术,如免疫染色、实时成像、下一代测序和单细胞分析,尽管取得了快速进展,但在将基因和蛋白质表达数据与时空信息进行全面整合方面仍面临挑战。利用机器学习在图像分析方面的进展,我们设计了一种新模型,通过融合表皮角质形成细胞的相差和荧光免疫染色图像来估计细胞生物标志物蛋白质水平。通过对各种蛋白质重复此过程,我们的模型可以从单个相差图像中估计多种蛋白质水平。此外,我们开发了一种系统,通过实时成像和相差方法分析多种蛋白质表达水平以及时空数据。我们的研究为基于细胞的研究提供了有价值的工具,并为应对分子生物学挑战提供了一条新途径。